
EQ2415 – Machine Learning and Data Science
HT22

Tutorial 1 A. Honoré, A. Ghosh

1 Inference in linear models

1.1 Projection on a line.

The set L = {βu | β ∈ R} where u ∈ Rd is a unit vector, defines a line of points that may be obtained
by varying the value of β.

Question 1. Derive an expression for the point y that lies on this line L, and that is as close as
possible (according to the Euclidean distance) to an arbitrary point x ∈ Rd. This operation of replacing
a point by its nearest member within some set is called projection.

Question 2. Write a small Python program that calculates the projection of random points y on
the line generated by a unit vector u. Use a space of dimension d = 2.

1.2 Some matrix algebra

Let m,n > 0.

Vector by scalar Suppose that a vector y ∈ Rm is dependent upon a scalar α ∈ R. Then the
derivative of y with respect to α is the vector:

J =
∂y

∂α
=


dy1

dα
...

dym

dα

 (1)

Scalar by vector Suppose that a scalar x ∈ R depends upon a vector y ∈ Rm. Then the derivative
of x with respect to y is the (row) vector:

J =
∂x

∂y
=

[
∂x
∂y1

. . . ∂x
∂ym

.
]

(2)

Vector by vector Suppose we have m real valued multivariate functions fi : Rn → R. Suppose also
that we have a multivariate function f : Rn → Rm is such that for some x ∈ Rn and y ∈ Rm,

y = f(x) = (f1(x), . . . , fm(x)). (3)

The Jacobian matrix J , of the multivariate function f , has elements

Jij =
∂fi(x)

∂xj
, for i = 1, . . . ,m and j = 1, . . . , n, (4)

i.e. can be written in matrix form:

J =
∂f(x)

∂x
=


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
...

∂fm(x)
∂x1

. . . ∂fm(x)
∂xn

 . (5)
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Scalar by matrix Suppose a scalar x ∈ R is dependent upon a matrixM ∈ Rm×n. Then the derivative
of x wrt that matrix is written in matrix form:

J =
∂x

∂M
=


∂x

∂M11
. . . ∂x

∂M1m

...
...

∂x
∂Mn1

. . . ∂x
∂Mnm

 (6)

Suppose that for m,n > 0, we have a ∈ Rn, x ∈ Rn, b ∈ Rm, c ∈ Rm and M ∈ Rn×m.

Question 1. Calculate the Jacobian:

1.
∂xTa

∂x
=

2.
∂aTx

∂x
=

3.
∂aTMb

∂M
=

4.
∂bTMTMc

∂M
=

5.
∂||x||2

∂x
=

1.3 Minimum mean square error

Suppose that we can observe two random variables x ∈ Rd and y ∈ Rq. Suppose also that these variables
are related, and that we model this relation by a linear model parameterized with a matrix A ∈ Rq×d,
i.e. such that

y = Ax. (7)

Question 1. Find A⋆ leading to the minimum mean square error, i.e. find A⋆ such that

A⋆ = argmin
A

E[||y −Ax||2]. (8)

Question 2. Suppose that you are given n data points for x and y, in the form of matrices X ∈ Rd×n

and Y ∈ Rq×n respectively.
Express A⋆

n, the value of A leading to minimum mean square error, as a function of the matrices X
and Y .

Question 3. The solution above can lead to overfitting, especially when a few data points are pro-
vided. Also XXT may not be invertible. We resort to regularization in these cases. We find A⋆

n such
that

A⋆
n = argmin

A
||Y −AX||2F + λ||A||2F , (9)

where λ > 0.
How is A⋆

n calculated in this case ?

Question 4. Implement the solutions to Questions 2 and 3 in Python. Generate data with a lin-
ear model and make sure that you are able to recover the linear transformation.
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1.4 Kernel based predictions

Similarly to the previous questions, we suppose that we are given n data points for x and y, in the form
of matrices X ∈ Rd×n and Y ∈ Rq×n respectively.

A kernel based predictor differs from a linear predictor in that it performs linear prediction on a trans-
formed version of the input rather than of the input directly. The transformation is performed by a
function (let’s call it ϕ) mapping input vectors to vectors in a space of arbitrary dimension N , i.e.
ϕ : Rd → RN . The prediction for a vector x ∈ Rd is written as

ŷ = wTϕ(x), (10)

where w are parameters of the predictor. In other words, kernel predictors are linear predictors in higher
dimensional spaces.

Question 1. Introducing the design matrix.

Derive the MSE solution for w, when a constant weighting factor ri > 0 is introduced for each of our
samples xi, i.e. find w⋆ that minimizes:

E(w) =
1

2n

n∑
i=1

ri
(
yi −wTϕ(xi)

)2
(11)

Question 1a. Write the derivative of E wrt w

Question 1b. Find w∗ that minimizes E as a function of

Φ′ =


√
r1ϕ(x1)

T

...√
rnϕ(xn)

T

 and Y ′ =


√
r1y1
...√
rnyn

 (12)

Question 1c. How can you interpret the coefficients ri ?

Question 2. Introducing the Gram matrix.

We now assume that ri = 1 for i = 1, . . . , n. Also, we assume that we introduce a regularization
parameter λ > 0 in our MSE.

Question 2a. Write the MSE (similar to equation 11) with a regularization term for ||w||2 and without
ri.

The design matrix Φ can be problematic to compute for some choices of ϕ. Instead let us introduce a
way to perform predictions on a new point x, without explicitely writting the design matrix. For this
we need another parameter vector :

a ∈ Rn, where ai = − 1

λ
(wTϕ(xn)− yn), for i = 1, . . . , n (13)

Using this in the expression of the gradient of equation (11), we find that this new parameter vector is
related to w as follows: w = ΦTa.

Question 2b. By introducing the Gram matrix K = ΦΦT , with elements Ki,j = ϕ(xi)
Tϕ(xj) show

that the prediction for a vector x ∈ Rd can be obtained as (Eq (6.9) in Bishop):

ŷ = Y (K + λIn)
−1

k(x1,x)
...

k(xn,x)

 (14)
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Question 3. Implement a function in Python that calculates the Gram matrix associated with a linear
kernel. Your function should take as argument two sets of vectors in Rd in the form of two matrices, e.g.
X1 ∈ Rd×n and X2 ∈ Rd×m, and return the Gram matrix K ∈ Rn×m.

Question 4. Similarly, implement a function in Python that calculates the Gram matrix associated
with a RBF kernel.

Question 5. Implement (14). Your function should take a matrix with input points columnwise and
return a matrix with the predicted vectors columnwise.

Question 6. Compare the performances of a kernel predictor with a linear kernel and with a RBF
kernel. You can use a toy dataset for this, e.g.:

from sklearn.datasets import make_circles;

X,Y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0);
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