$\begin{array}{c} {\rm EQ2415-Machine\ Learning\ and\ Data\ Science} \\ {\rm HT22} \end{array}$

Tutorial 1

A. Honoré, A. Ghosh

1 Inference in linear models

1.1 Projection on a line.

The set $\mathcal{L} = \{\beta \mathbf{u} \mid \beta \in \mathbb{R}\}$ where $\mathbf{u} \in \mathbb{R}^d$ is a unit vector, defines a line of points that may be obtained by varying the value of β .

Question 1. Derive an expression for the point \mathbf{y} that lies on this line \mathcal{L} , and that is as close as possible (according to the Euclidean distance) to an arbitrary point $\mathbf{x} \in \mathbb{R}^d$. This operation of replacing a point by its nearest member within some set is called projection.

Question 2. Write a small Python program that calculates the projection of random points \mathbf{y} on the line generated by a unit vector \mathbf{u} . Use a space of dimension d = 2.

1.2 Some matrix algebra

Let m, n > 0.

Vector by scalar Suppose that a vector $\mathbf{y} \in \mathbb{R}^m$ is dependent upon a scalar $\alpha \in \mathbb{R}$. Then the derivative of \mathbf{y} with respect to α is the vector:

$$J = \frac{\partial \mathbf{y}}{\partial \alpha} = \begin{bmatrix} \frac{dy_1}{d\alpha} \\ \vdots \\ \frac{dy_m}{d\alpha} \end{bmatrix}$$
(1)

Scalar by vector Suppose that a scalar $x \in \mathbb{R}$ depends upon a vector $\mathbf{y} \in \mathbb{R}^m$. Then the derivative of x with respect to y is the (row) vector:

$$J = \frac{\partial x}{\partial \mathbf{y}} = \begin{bmatrix} \frac{\partial x}{\partial y_1} & \dots & \frac{\partial x}{\partial y_m} \end{bmatrix}$$
(2)

Vector by vector Suppose we have *m* real valued multivariate functions $f_i : \mathbb{R}^n \to \mathbb{R}$. Suppose also that we have a multivariate function $f : \mathbb{R}^n \to \mathbb{R}^m$ is such that for some $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$,

$$\mathbf{y} = f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})).$$
(3)

The Jacobian matrix J, of the multivariate function f, has elements

$$J_{ij} = \frac{\partial f_i(\mathbf{x})}{\partial x_j}, \text{ for } i = 1, \dots, m \text{ and } j = 1, \dots, n,$$
(4)

i.e. can be written in matrix form:

$$J = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix}.$$
 (5)

Scalar by matrix Suppose a scalar $x \in \mathbb{R}$ is dependent upon a matrix $M \in \mathbb{R}^{m \times n}$. Then the derivative of x wrt that matrix is written in matrix form:

$$J = \frac{\partial x}{\partial M} = \begin{bmatrix} \frac{\partial x}{\partial M_{11}} & \cdots & \frac{\partial x}{\partial M_{1m}} \\ \vdots & & \vdots \\ \frac{\partial x}{\partial M_{n1}} & \cdots & \frac{\partial x}{\partial M_{nm}} \end{bmatrix}$$
(6)

Suppose that for m, n > 0, we have $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^m$ and $M \in \mathbb{R}^{n \times m}$.

Question 1. Calculate the Jacobian:

1.
$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} =$$

2. $\frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} =$
3. $\frac{\partial \mathbf{a}^T M \mathbf{b}}{\partial M} =$
4. $\frac{\partial \mathbf{b}^T M^T M \mathbf{c}}{\partial M} =$
5. $\frac{\partial ||\mathbf{x}||^2}{\partial \mathbf{x}} =$

1.3 Minimum mean square error

Suppose that we can observe two random variables $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^q$. Suppose also that these variables are related, and that we model this relation by a linear model parameterized with a matrix $A \in \mathbb{R}^{q \times d}$, i.e. such that

$$\mathbf{y} = A\mathbf{x}.\tag{7}$$

Question 1. Find A^* leading to the minimum mean square error, i.e. find A^* such that

$$A^{\star} = \arg\min_{A} \mathbb{E}[||\mathbf{y} - A\mathbf{x}||^{2}].$$
(8)

Question 2. Suppose that you are given n data points for x and y, in the form of matrices $X \in \mathbb{R}^{d \times n}$ and $Y \in \mathbb{R}^{q \times n}$ respectively.

Express A_n^* , the value of A leading to minimum mean square error, as a function of the matrices X and Y.

Question 3. The solution above can lead to overfitting, especially when a few data points are provided. Also XX^T may not be invertible. We resort to regularization in these cases. We find A_n^* such that

$$A_n^{\star} = \arg\min_A ||Y - AX||_F^2 + \lambda ||A||_F^2, \tag{9}$$

where $\lambda > 0$.

How is A_n^{\star} calculated in this case ?

Question 4. Implement the solutions to Questions 2 and 3 in Python. Generate data with a linear model and make sure that you are able to recover the linear transformation.

1.4 Kernel based predictions

Similarly to the previous questions, we suppose that we are given n data points for \mathbf{x} and \mathbf{y} , in the form of matrices $X \in \mathbb{R}^{d \times n}$ and $Y \in \mathbb{R}^{q \times n}$ respectively.

A kernel based predictor differs from a linear predictor in that it performs linear prediction on a transformed version of the input rather than of the input directly. The transformation is performed by a function (let's call it ϕ) mapping input vectors to vectors in a space of arbitrary dimension N, i.e. $\phi : \mathbb{R}^d \to \mathbb{R}^N$. The prediction for a vector $\mathbf{x} \in \mathbb{R}^d$ is written as

$$\hat{\mathbf{y}} = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}),\tag{10}$$

where \mathbf{w} are parameters of the predictor. In other words, kernel predictors are linear predictors in higher dimensional spaces.

Question 1. Introducing the design matrix.

Derive the MSE solution for \mathbf{w} , when a constant weighting factor $r_i > 0$ is introduced for each of our samples \mathbf{x}_i , i.e. find \mathbf{w}^* that minimizes:

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} r_i \left(y_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \right)^2$$
(11)

Question 1a. Write the derivative of E wrt **w**

Question 1b. Find \mathbf{w}^* that minimizes E as a function of

$$\mathbf{\Phi}' = \begin{bmatrix} \sqrt{r_1} \boldsymbol{\phi}(\mathbf{x}_1)^T \\ \vdots \\ \sqrt{r_n} \boldsymbol{\phi}(\mathbf{x}_n)^T \end{bmatrix} \text{ and } Y' = \begin{bmatrix} \sqrt{r_1} y_1 \\ \vdots \\ \sqrt{r_n} y_n \end{bmatrix}$$
(12)

Question 1c. How can you interpret the coefficients r_i ?

Question 2. Introducing the Gram matrix.

We now assume that $r_i = 1$ for i = 1, ..., n. Also, we assume that we introduce a regularization parameter $\lambda > 0$ in our MSE.

Question 2a. Write the MSE (similar to equation 11) with a regularization term for $||\mathbf{w}||_2$ and without r_i .

The design matrix Φ can be problematic to compute for some choices of ϕ . Instead let us introduce a way to perform predictions on a new point **x**, without explicitly writting the design matrix. For this we need another parameter vector :

$$\mathbf{a} \in \mathbb{R}^n$$
, where $a_i = -\frac{1}{\lambda} (\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) - y_n)$, for $i = 1, \dots, n$ (13)

Using this in the expression of the gradient of equation (11), we find that this new parameter vector is related to \mathbf{w} as follows: $\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$.

Question 2b. By introducing the Gram matrix $K = \mathbf{\Phi}\mathbf{\Phi}^T$, with elements $K_{i,j} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ show that the prediction for a vector $\mathbf{x} \in \mathbb{R}^d$ can be obtained as (Eq (6.9) in Bishop):

$$\hat{\mathbf{y}} = Y \left(K + \lambda I_n \right)^{-1} \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}) \\ \vdots \\ k(\mathbf{x}_n, \mathbf{x}) \end{bmatrix}$$
(14)

Question 3. Implement a function in Python that calculates the Gram matrix associated with a linear kernel. Your function should take as argument two sets of vectors in \mathbb{R}^d in the form of two matrices, e.g. $X_1 \in \mathbb{R}^{d \times n}$ and $X_2 \in \mathbb{R}^{d \times m}$, and return the Gram matrix $K \in \mathbb{R}^{n \times m}$.

Question 4. Similarly, implement a function in Python that calculates the Gram matrix associated with a RBF kernel.

Question 5. Implement (14). Your function should take a matrix with input points columnwise and return a matrix with the predicted vectors columnwise.

Question 6. Compare the performances of a kernel predictor with a linear kernel and with a RBF kernel. You can use a toy dataset for this, e.g.:

from sklearn.datasets import make_circles; X,Y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0);