EQ2415 — Machine Learning and Data Science
HT22

Tutorial 1 A. Honoré, A. Ghosh

1 Inference in linear models

1.1 Projection on a line.
The set £ = {Bu | B € R} where u € R? is a unit vector, defines a line of points that may be obtained
by varying the value of .

Question 1. Derive an expression for the point y that lies on this line £, and that is as close as
possible (according to the Euclidean distance) to an arbitrary point x € R%. This operation of replacing
a point by its nearest member within some set is called projection.

Question 2. Write a small Python program that calculates the projection of random points y on
the line generated by a unit vector u. Use a space of dimension d = 2.

1.2 Some matrix algebra

Let m,n > 0.

Vector by scalar Suppose that a vector y € R™ is dependent upon a scalar & € R. Then the
derivative of y with respect to « is the vector:
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Scalar by vector Suppose that a scalar z € R depends upon a vector y € R™. Then the derivative
of x with respect to y is the (row) vector:
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Vector by vector Suppose we have m real valued multivariate functions f; : R™ — R. Suppose also
that we have a multivariate function f : R™ — R™ is such that for some x € R"™ and y € R™,

y =f(x) = (f1(x),..., fm(x)). ®3)
The Jacobian matrix J, of the multivariate function f, has elements
OF,
Jij = g;gj),fori:l,...,mandj:l,...,n, (4)
i.e. can be written in matrix form:
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Scalar by matrix Suppose a scalar € R is dependent upon a matrix M € R™*". Then the derivative
of x wrt that matrix is written in matrix form:

oz ox
o OMy1 """ OMim
T=smu= | : (6)
ox ox
8Mn,1 e 8Mn7n

Suppose that for m,n > 0, we have a € R", x € R, b € R™, ¢ € R™ and M € R*"*™,

Question 1. Calculate the Jacobian:
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1.3 Minimum mean square error

Suppose that we can observe two random variables x € R% and y € R?. Suppose also that these variables
are related, and that we model this relation by a linear model parameterized with a matrix A € R7%¢,
i.e. such that

y = Ax. (7)

Question 1. Find A* leading to the minimum mean square error, i.e. find A* such that

A% = argminE[lly — Ax|?. (8)

Question 2. Suppose that you are given n data points for x and y, in the form of matrices X € R4*"
and Y € R?*"™ respectively.

Express A}, the value of A leading to minimum mean square error, as a function of the matrices X
and Y.

Question 3. The solution above can lead to overfitting, especially when a few data points are pro-
vided. Also X X7 may not be invertible. We resort to regularization in these cases. We find A% such
that

Ay, = argmin||Y = AX[[E + N[ A|[%, (9)

where A > 0.
How is A} calculated in this case 7

Question 4. Implement the solutions to Questions 2 and 3 in Python. Generate data with a lin-
ear model and make sure that you are able to recover the linear transformation.



1.4 Kernel based predictions

Similarly to the previous questions, we suppose that we are given n data points for x and y, in the form
of matrices X € R¥*™ and Y € RI*" respectively.

A kernel based predictor differs from a linear predictor in that it performs linear prediction on a trans-
formed version of the input rather than of the input directly. The transformation is performed by a

function (let’s call it ¢) mapping input vectors to vectors in a space of arbitrary dimension N, i.e.
¢ : R?Y — RN, The prediction for a vector x € R? is written as

y=w'o(x), (10)

where w are parameters of the predictor. In other words, kernel predictors are linear predictors in higher
dimensional spaces.

Question 1. Introducing the design matrix.

Derive the MSE solution for w, when a constant weighting factor r; > 0 is introduced for each of our
samples x;, i.e. find w* that minimizes:

E(w) = % Zri (yi — qub(xi))2 (11)

Question la. Write the derivative of E wrt w
Question 1b. Find w* that minimizes F as a function of
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Question 1c. How can you interpret the coefficients r; ?
Question 2. Introducing the Gram matrix.
We now assume that r;, = 1 for ¢ = 1,...,n. Also, we assume that we introduce a regularization

parameter A > 0 in our MSE.

Question 2a. Write the MSE (similar to equation 11) with a regularization term for ||w||2 and without
T

The design matrix @ can be problematic to compute for some choices of ¢. Instead let us introduce a
way to perform predictions on a new point x, without explicitely writting the design matrix. For this
we need another parameter vector :

1
a € R", where a; = —X(WT(ZS(X,,Z) —ypn), fori=1,...,n (13)

Using this in the expression of the gradient of equation (11), we find that this new parameter vector is
related to w as follows: w = & a.

Question 2b. By introducing the Gram matrix K = ®®7 | with elements Ki; = ¢(xi)T ¢p(x;) show
that the prediction for a vector x € R? can be obtained as (Eq (6.9) in Bishop):

k(x1,x)
V=Y (K+M,)" | (14)
k(xp,x)



Question 3. Implement a function in Python that calculates the Gram matrix associated with a linear
kernel. Your function should take as argument two sets of vectors in R? in the form of two matrices, e.g.
X; € R™™ and X, € R¥™_ and return the Gram matrix K € R?*™,

Question 4. Similarly, implement a function in Python that calculates the Gram matrix associated
with a RBF kernel.

Question 5. Implement (14). Your function should take a matrix with input points columnwise and
return a matrix with the predicted vectors columnwise.

Question 6. Compare the performances of a kernel predictor with a linear kernel and with a RBF
kernel. You can use a toy dataset for this, e.g.:

from sklearn.datasets import make_circles;
X,Y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0);



