EQ2415 — Machine Learning and Data Science
HT22

Tutorial 2 A. Honoré, A. Ghosh

1 Kernel substitution

Material: Bishop’s book Chapter 6.4.1 and 6.4.2

Valid kernels Let n,d > 0. A function k : R? x R? — R is said to be a valid kernel iif:
the matrix K € R"*" associated to k, whose elements are given by k(x;,x;) with x;,x; € R?, is positive
semi-definite for all possible choices of x;,x; (Bishop page 295).

By definition, a matrix K € R™*" is said to be positive semi-definite iif
a’ Ka >0, foracR", (1)
this is not the same thing as a matrix whose elements are non-negative.
1.1 Linear Kernel
Let a function k : R? x R? — R be such that:
E(x,x') = (x,x') = xTx', for x,x" € R%. (2)
Let K € R™ " denote the matrix with elements K; ; = k(v;,v;) with v;,v; in a set of n vectors of R9.

Question 1. Show that the function k is a valid kernel, by showing that K is positive semi-definite.

1.2 Constructing valid kernels

Bishop exercise 6.7. Suppose that k; : R x R? — R and ks : R x R? — R are two valid kernels.
Question 1. Show that
k(x,x') = k1 (x,x') + ka(x, %), with x,x" € R?, (3)

is a valid kernel.

Question 2. Show that
k(x,x) = k1 (x, X )ka (x, %), with x,x" € R?, (4)

is a valid kernel.

1.3 The exponential kernel

Remember that the Taylor series expansion of the exponential function around 0 is:

+oo ok
exp(z) = Z "k for x € R. (5)
k=0
The radial basis function (RBF) is expressed:
[Ix —x'||? a
k(x,x') = exp (—%‘2 , for x,x’ € R%. (6)



Question 1. Show that the RBF is a valid kernel.

Question 2. Show that the RBF can be expressed as the inner product of an infinite-dimensional
feature vector. First assume that d = 1, and then try to generalize to arbitrary finite d using the multi-
nomial theorem. Bishop 6.11 (p 321)

1.4 Gaussian Process for regression

Suppose that you are given N training data points for a regression problem in the form of two matrices:
X =[x1,...,xn] ER*N and Y = [yy,...,yn] € RN, In a Gaussian process model, the joint distri-
bution of the target training data is assumed Gaussian with zero mean and with covariance determined
by a Gram matrix K, i.e. :

p(y1,- - yN[x1, ..., xNy) = N(0,Ky), (7)

where the elements of Ky € R™ "™ are determined from a kernel k on the set of training data points X.

Suppose that you want to predict the target value yn,1 € R? for a new target xy,1 € R? using
the Gaussian process model in (7). This consists in finding the posterior distribution of the target value,
given the training data and the new input data point:

p(YN+1|Y1>~--aYN,X17~-~7XN7XN+1)~ (8>

Question 1.. Bishop 6.20 p322
Find the family and parameters of the joint distribution of the training and new target points conditioned
on the training and new data points:

PYN41L, Y15 YNIXL, oy XN, XN41)- 9)

Question 2. Using standard results on Gaussian, we can say that

PYN+1|Y1s - s YN XD, XN, XN ) = N (m(XNt1), 02 (Xn1)) (10)

i.e. that the distribution we are looking for is Gaussian. Use the equations on partitioned Gaussian:
(2.81)-(2.82) page 87, to determine m(xy4+1) and oo (Xn41)-

Question 3. Implement the Gaussian Process model in Python.



