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Tutorial 2 A. Honoré, A. Ghosh

1 Kernel substitution

Material: Bishop’s book Chapter 6.4.1 and 6.4.2

Valid kernels Let n, d > 0. A function k : Rd × Rd → R is said to be a valid kernel iif:
the matrix K ∈ Rn×n associated to k, whose elements are given by k(xi,xj) with xi,xj ∈ Rd, is positive
semi-definite for all possible choices of xi,xj (Bishop page 295).

By definition, a matrix K ∈ Rn×n is said to be positive semi-definite iif

aTKa ≥ 0, for a ∈ Rn, (1)

this is not the same thing as a matrix whose elements are non-negative.

1.1 Linear Kernel

Let a function k : Rd × Rd → R be such that:

k(x,x′) = ⟨x,x′⟩ = xTx′, for x,x′ ∈ Rd. (2)

Let K ∈ Rn×n denote the matrix with elements Ki,j = k(vi,vj) with vi,vj in a set of n vectors of Rd.

Question 1. Show that the function k is a valid kernel, by showing that K is positive semi-definite.

1.2 Constructing valid kernels

Bishop exercise 6.7. Suppose that k1 : Rd × Rd → R and k2 : Rd × Rd → R are two valid kernels.

Question 1. Show that

k(x,x′) = k1(x,x
′) + k2(x,x

′), with x,x′ ∈ Rd, (3)

is a valid kernel.

Question 2. Show that
k(x,x′) = k1(x,x

′)k2(x,x
′), with x,x′ ∈ Rd, (4)

is a valid kernel.

1.3 The exponential kernel

Remember that the Taylor series expansion of the exponential function around 0 is:

exp(x) =

+∞∑
k=0

xk

k!
, for x ∈ R. (5)

The radial basis function (RBF) is expressed:

k(x,x′) = exp

(
−||x− x′||2

2σ2

)
, for x,x′ ∈ Rd. (6)
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Question 1. Show that the RBF is a valid kernel.

Question 2. Show that the RBF can be expressed as the inner product of an infinite-dimensional
feature vector. First assume that d = 1, and then try to generalize to arbitrary finite d using the multi-
nomial theorem. Bishop 6.11 (p 321)

1.4 Gaussian Process for regression

Suppose that you are given N training data points for a regression problem in the form of two matrices:
X = [x1, . . . ,xN ] ∈ Rd×N and Y = [y1, . . . ,yN ] ∈ Rq×N . In a Gaussian process model, the joint distri-
bution of the target training data is assumed Gaussian with zero mean and with covariance determined
by a Gram matrix K, i.e. :

p(y1, . . . ,yN |x1, . . . ,xN ) = N (0,KN ), (7)

where the elements of KN ∈ Rn×n are determined from a kernel k on the set of training data points X.

Suppose that you want to predict the target value yN+1 ∈ Rq for a new target xN+1 ∈ Rd using
the Gaussian process model in (7). This consists in finding the posterior distribution of the target value,
given the training data and the new input data point:

p(yN+1|y1, . . . ,yN ,x1, . . . ,xN ,xN+1). (8)

Question 1.. Bishop 6.20 p322
Find the family and parameters of the joint distribution of the training and new target points conditioned
on the training and new data points:

p(yN+1,y1, . . . ,yN |x1, . . . ,xN ,xN+1). (9)

Question 2. Using standard results on Gaussian, we can say that

p(yN+1|y1, . . . ,yN ,x1, . . . ,xN ,xN+1) = N (m(xN+1), σ2(xN+1)) , (10)

i.e. that the distribution we are looking for is Gaussian. Use the equations on partitioned Gaussian:
(2.81)-(2.82) page 87, to determine m(xN+1) and σ2(xN+1).

Question 3. Implement the Gaussian Process model in Python.
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