
EQ2415 – Machine Learning and Data Science
HT22

Tutorial 2 A. Honoré, A. Ghosh

1 Kernel substitution

Material: Bishop’s book Chapter 6.4.1 and 6.4.2

Valid kernels Let n, d > 0. A function k : Rd × Rd → R is said to be a valid kernel iif:
the matrix K ∈ Rn×n associated to k, whose elements are given by k(xi,xj) with xi,xj ∈ Rd, is positive
semi-definite for all possible choices of xi,xj (Bishop page 295).

By definition, a matrix K ∈ Rn×n is said to be positive semi-definite iif

aTKa ≥ 0, for a ∈ Rn, (1)

this is not the same thing as a matrix whose elements are non-negative.

1.1 Linear Kernel

Let a function k : Rd × Rd → R be such that:

k(x,x′) = ⟨x,x′⟩ = xTx′, for x,x′ ∈ Rd. (2)

Let K ∈ Rn×n denote the matrix with elements Ki,j = k(vi,vj) with vi,vj in a set of n vectors of Rd.

Question 1. Show that the function k is a valid kernel, by showing that K is positive semi-definite.

Solution: General solution:
Let a ∈ Rn. We have

aTKa =
∑
i,j

aiaj⟨vi,vj⟩

=
∑
i,j

⟨aivi, ajvj⟩

= ⟨
∑
i

aivi,
∑
j

ajvj⟩, by linearity of scalar products

= ||
∑
i

aivi||2 ≥ 0,

(3)

Thus K is positive semi-definite and is a Gram matrix associated with k, thus k is a valid kernel.

Note: This is true for any scalar product. Thus, to prove that a kernel is valid, it is sometimes easier
to show that the kernel function k can be expressed as the scalar product of some arbitrary functions of
x and x′ ! ■

1.2 Constructing valid kernels

Bishop exercise 6.7. Suppose that k1 : Rd × Rd → R and k2 : Rd × Rd → R are two valid kernels.

Question 1. Show that

k(x,x′) = k1(x,x
′) + k2(x,x

′), with x,x′ ∈ Rd, (4)

is a valid kernel.

Solution: Let K1 and K2 be two Gram matrices associated with k1 and k2 respectively. By defi-
nition, K1 and K2 are positive semi-definite, thus K = K1 +K2 is positive semi-definite and is a Gram
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matrix associated with k. Thus k is a valid kernel. ■

Question 2. Show that
k(x,x′) = k1(x,x

′)k2(x,x
′), with x,x′ ∈ Rd, (5)

is a valid kernel.

Solution: Let N,M > 0. We write k1(x,x
′) = ϕ(1)(x)Tϕ(1)(x′) with ϕ(1) : Rd → RM and

k2(x,x
′) = ϕ(2)(x)Tϕ(2)(x′) with ϕ(2) : Rd → RN . Then

k(x,x′) = k1(x,x
′)k2(x,x

′) = ϕ(1)(x)Tϕ(1)(x′)ϕ(2)(x)Tϕ(2)(x′)

=

M∑
i=1

ϕ
(1)
i (x)ϕ

(1)
i (x′)

N∑
j=1

ϕ
(2)
j (x)ϕ

(2)
j (x′) =

M∑
i=1

N∑
j=1

[ϕ
(1)
i (x)ϕ

(2)
j (x)][ϕ

(1)
i (x′)ϕ

(2)
j (x′)]

=

MN∑
k=1

ϕk(x)ϕk(x
′) = ϕ(x)Tϕ(x′), where ϕ(x) : Rd → RMN .

(6)

Thus, k can be written as a scalar product, thus the associated matrix is a Gram matrix, thus it is
positive semi-definite, thus k is a valid kernel. ■

1.3 The exponential kernel

Remember that the Taylor series expansion of the exponential function around 0 is:

exp(x) =

+∞∑
k=0

xk

k!
, for x ∈ R. (7)

The radial basis function (RBF) is expressed:

k(x,x′) = exp

(
−||x− x′||2

2σ2

)
, for x,x′ ∈ Rd. (8)

Question 1. Show that the RBF is a valid kernel.

Solution: We expand (8):

k(x,x′) = exp

(
−xTx

2σ2

)
exp

(
xTx′

σ2

)
exp

(
− (x′)Tx′

2σ2

)
. (9)

Using 7 we see that the exponential of a kernel is a sum and product of kernels. The linear kernel is
valid, the products of valid kernels are valid, and thus the RBF is a valid kernel. ■

Question 2. Show that the RBF can be expressed as the inner product of an infinite-dimensional
feature vector. First assume that d = 1, and then try to generalize to arbitrary finite d using the multi-
nomial theorem. Bishop 6.11 (p 321)

Solution: We use the expansion:

k(x,x′) = exp

(
−xTx

2σ2

)
exp

(
xTx′

σ2

)
exp

(
− (x′)Tx′

2σ2

)

= exp

(
−xTx

2σ2

)
.

+∞∑
k=0

(
xTx′

σ2

)k
k!

 . exp

(
− (x′)Tx′

2σ2

) (10)
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In what follows assume σ = 1, or replace x (and x′) with scaled versions y = 1
σx. Let us further

expand (xTx′)k for k ∈ N:

(xTx′)k = (x1x
′
1 + . . .+ xdx

′
d)

k
, using the multinomial theorem:

=
∑

n1+...+nd=k
n1,··· ,nd>0

k!

n1!n2! . . . nd!

d∏
i=1

(xix
′
i)

ni

=
∑

n1+...+nd=k
n1,...,nd>0

k!

∏d
i=1 x

ni
i√

n1!n2! . . . nd!

∏d
i=1(x

′
i)

ni

√
n1!n2! . . . nd!

(11)

This gives:

k(x,x′) =

+∞∑
k=0

∑
n1+...+nd=k
n1,...,nd>0

(
exp

(
−xTx

2

) ∏d
i=1 x

ni
i√

n1!n2! . . . nd!

)
.

(
exp

(
− (x′)Tx′

2

) ∏d
i=1(x

′
i)

ni

√
n1!n2! . . . nd!

)
(12)

The number of d-tuples of positive integers which sum to k (the index of the second sum), varies with
k. In fact, there are exactly lk =

(
k+d−1
d−1

)
such d-tuples.

This means that we can define an intermediate vector vk(x) of length lk, where the jth element:

vk(x)j = exp

(
−xTx

2

) ∏d
i=1 x

nj
i

i√
nj
1!n

j
2! . . . n

j
d!
, (13)

where nj
1, . . . , n

j
d, is the jth d-tuples of positive integers who sum to k.

This gives:

k(x,x′) =

+∞∑
k=0

lk∑
j=1

vk(x)jvk(x
′)j (14)

Now, we can write the final vector of infinite dimension:

ϕ(x) = [v0(x), v1(x)1, . . . , v1(x)l1 , . . . , vn(x)1, . . . , vn(x)ln , . . .] (15)

Finally,

k(x,x′) =
+∞∑
m=0

ϕm(x)ϕm(x′) = ϕ(x)Tϕ(x′), (16)

where ϕ maps vectors in Rd to vectors in a space of infinite dimension. ■

1.4 Gaussian Process for regression

Suppose that you are given N training data points for a regression problem in the form of two matrices:
X = [x1, . . . ,xN ] ∈ Rd×N and Y = [y1, . . . ,yN ] ∈ Rq×N . In a Gaussian process model, the joint distri-
bution of the target training data is assumed Gaussian with zero mean and with covariance determined
by a Gram matrix K, i.e. :

p(y1, . . . ,yN |x1, . . . ,xN ) = N (0,KN ), (17)

where the elements of KN ∈ Rn×n are determined from a kernel k on the set of training data points X.

Suppose that you want to predict the target value yN+1 ∈ Rq for a new target xN+1 ∈ Rd using
the Gaussian process model in (17). This consists in finding the posterior distribution of the target
value, given the training data and the new input data point:

p(yN+1|y1, . . . ,yN ,x1, . . . ,xN ,xN+1). (18)

Question 1.. Bishop 6.20 p322
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Find the family and parameters of the joint distribution of the training and new target points conditioned
on the training and new data points:

p(yN+1,y1, . . . ,yN |x1, . . . ,xN ,xN+1). (19)

Solution: Using the definition of the model in (17), the joint distribution can be written in terms of a
Gram matrix KN+1:

p(yN+1,y1, . . . ,yN |x1, . . . ,xN ,xN+1) = N (0,KN+1) (20)

where KN+1 =

[
c kT

k KN

]
, with k = [k(x1,xN+1), . . . , k(xN ,xN+1)]

T and c = k(xN+1,xN+1). ■

Question 2. Using standard results on Gaussian, we can say that

p(yN+1|y1, . . . ,yN ,x1, . . . ,xN ,xN+1) = N (m(xN+1), σ2(xN+1)) , (21)

i.e. that the distribution we are looking for is Gaussian. Use the equations on partitioned Gaussian:
(2.81)-(2.82) page 87, to determine m(xN+1) and σ2(xN+1).

Solution:
Suppose x ∈ Rd is distributed according to a multivariate Gaussian distribution N (µ,Σ). Suppose

we write x =

[
xa

xb

]
, µ =

[
µa

µb

]
and Σ =

[
Σaa Σab

Σba Σbb

]
, since Σ = ΣT we have Σaa and Σbb symetric and

Σba = ΣT
ab.

Then we have that:
µa|b = µa +ΣabΣ

−1
bb (xb − µb)

Σa|b = Σaa −ΣabΣ
−1
bb Σba

(22)

We consider yN+1 as xa, yN as xb, c as Σaa, k as Σba and kT as Σab.
We find

m(xN+1) = kTK−1
N Y

σ2(xN+1) = c− kTK−1
N k

(23)

■

Question 3. Implement the Gaussian Process model in Python.
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