EQ2415 — Machine Learning and Data Science
HT22

Tutorial 2 A. Honoré, A. Ghosh

1 Kernel substitution

Material: Bishop’s book Chapter 6.4.1 and 6.4.2

Valid kernels Let n,d > 0. A function & : R? x R¢ — R is said to be a valid kernel iif:
the matrix K € R™*" associated to k, whose elements are given by k(x;,x;) with x;,x; € R9, is positive
semi-definite for all possible choices of x;,x; (Bishop page 295).
By definition, a matrix K € R™*" is said to be positive semi-definite iif

a’Ka>0, foracR", (1)
this is not the same thing as a matrix whose elements are non-negative.
1.1 Linear Kernel

Let a function & : R x R? — R be such that:
E(x,x') = (x,x') = xTx/, for x,x" € R% (2)
Let K € R™ " denote the matrix with elements K; ; = k(v;,v;) with v;,v; in a set of n vectors of R<.

Question 1. Show that the function k is a valid kernel, by showing that K is positive semi-definite.

Solution: General solution:
Let a € R"™. We have

aTKa = Z a;a; <Vi> Vj>
i3

= {aivi,a;v;)
i3

= (Z a;v;, Z a;v;), by linearity of scalar products

g J
=1>awill* >0,
[

Thus K is positive semi-definite and is a Gram matrix associated with k, thus k is a valid kernel.

Note: This is true for any scalar product. Thus, to prove that a kernel is valid, it is sometimes easier
to show that the kernel function k can be expressed as the scalar product of some arbitrary functions of
x and x' ! [ ]

1.2 Constructing valid kernels
Bishop exercise 6.7. Suppose that k; : R? x R? — R and ks : R? x R? — R are two valid kernels.
Question 1. Show that

k(x,x') = k1 (x,x') + ka(x,x'), with x,x" € R%, (4)
is a valid kernel.

Solution: Let K; and K> be two Gram matrices associated with k; and ks respectively. By defi-
nition, K; and K are positive semi-definite, thus K = K; 4+ K5 is positive semi-definite and is a Gram



matrix associated with k. Thus k is a valid kernel. |

Question 2. Show that
k(x,x') = k1(x,x)ka(x, %), with x,x" € R?, (5)

is a valid kernel.

Solution:  Let N,M > 0. We write ki(x,x') = ¢ (x)T¢pM (x') with ¢V : RY — RM and
ko (x,x") = 0P (x)T P (x') with ¢® : RY — RN, Then

k(x,x') = ki (x,x k2 (x,x") = ¢V (x)T oV (x) 9P (x)T 6P (x)

M N M N
= 200000 2870097 0) = 33 I gl ]

= Z Op(X) 0y (x) = p(x)Th(x'), where p(x) : RY — RMN,
k=1

Thus, k can be written as a scalar product, thus the associated matrix is a Gram matrix, thus it is
positive semi-definite, thus k is a valid kernel. |
1.3 The exponential kernel

Remember that the Taylor series expansion of the exponential function around 0 is:

+o0 L

x
exp(z) = Z L for x € R. (7)
k=0
The radial basis function (RBF) is expressed:
[Ix —x'||? a
k(x,x") = exp (—M , for x,x’ € R%. (8)

Question 1. Show that the RBF is a valid kernel.
Solution: We expand (8):

) = o (%) np (X2 ) e (- 27K, ®

Using 7 we see that the exponential of a kernel is a sum and product of kernels. The linear kernel is
valid, the products of valid kernels are valid, and thus the RBF is a valid kernel. |

Question 2. Show that the RBF can be expressed as the inner product of an infinite-dimensional
feature vector. First assume that d = 1, and then try to generalize to arbitrary finite d using the multi-
nomial theorem. Bishop 6.11 (p 321)

Solution: We use the expansion:
T T/ NT S,/
N xtx xtx (x)'x
Fxx) = exp (_ 202 ) P ( o? ) b <_ 202 )

XTX

e (5
T Sy o) NT !
o (8). (£ O o ()

k=0

(10)
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In what follows assume o = 1, or replace x (and x’) with scaled versions y = ~x. Let us further

expand (xTx')* for k € N:
(xTx )% = (212} + ... + z42)" , using the multinomial theorem:

d

k! .

= Z o] 1 H(xixi)m
ningt...Ng: el

TS (11)
d ng d \n;
_ Z Kl [[iz: [Limy (=5)
O Vnilng! . ong! vnglna!. . ng!
ni,...,ng >0
This gives:
= d i d i
k(x,x') = Z Z exp (XTX> [Ty =7 Nexp ( (X/)TX,) [Tz (@)
k=0ni+...4+nqg=k 2 n1!n2!-~-nd! 2 nl!nzl...nd!
N1ye.eyg >0
(12)

The number of d-tuples of positive integers which sum to & (the index of the second sum), varies with
k. In fact, there are exactly [ = (k‘xf) such d-tuples.
This means that we can define an intermediate vector vg(x) of length li, where the jth element:

T d n]
v(x); = exp (—X x) Ui ; (13)

2 njng!. .. nd)
where n{, . ,ni, is the jth d-tuples of positive integers who sum to k.
This gives:
+oo Ik
k(x,x') =Y 0> we(x)0e(x); (14)
k=0 j=1

Now, we can write the final vector of infinite dimension:

O(x) = [vo(x),v1(X)1y -5 V1(X)1ys -+ vy Vn(X)1y v oy Un (X1, 5 - - (15)
Finally,
—+o0
k(X)) = ) dn ()¢, (x) = p(x)Tp(x'), (16)
m=0
where ¢ maps vectors in R% to vectors in a space of infinite dimension. |

1.4 Gaussian Process for regression

Suppose that you are given N training data points for a regression problem in the form of two matrices:
X =[x1,...,xn] ER*N and Y = [y1,...,yn] € R?*Y. In a Gaussian process model, the joint distri-
bution of the target training data is assumed Gaussian with zero mean and with covariance determined
by a Gram matrix K, i.e. :

p(ylw"ayN‘xla"wXN):N<07KN)ﬂ (17)
where the elements of Ky € R™ ™ are determined from a kernel k on the set of training data points X.
Suppose that you want to predict the target value yny,1 € R? for a new target xy,1 € R? using
the Gaussian process model in (17). This consists in finding the posterior distribution of the target

value, given the training data and the new input data point:

p(}’N+1|Y1,~~~7YN»X17~~»XN7XN+1)~ (18)

Question 1.. Bishop 6.20 p322



Find the family and parameters of the joint distribution of the training and new target points conditioned
on the training and new data points:

p(YN+1,Y1»~~~;YN|X17~~>XN7XN+1)~ (19)

Solution: Using the definition of the model in (17), the joint distribution can be written in terms of a
Gram matrix Kpy1:

p(yN+1aY1a'"7yN|X17"'7XN7XN+1) :N(OaKN-'rl) (20)

¢ kT

where Kny1 = [k K
N

} , with k = [k(x1,Xn+1),- -, k(xn, xn4+1)]T and ¢ = k(Xy11, XN11)- |
Question 2. Using standard results on Gaussian, we can say that

P(YN+1lY1L, - YN XL, XN, XN 1) = N (m(XNv 1), 02(XN11)) (21)

i.e. that the distribution we are looking for is Gaussian. Use the equations on partitioned Gaussian:
(2.81)-(2.82) page 87, to determine m(xy+1) and o2(Xn41)-

Solution:
Suppose x € R? is distributed according to a multivariate Gaussian distribution N (p, X). Suppose

we write x = [Xa}, n= [Ma] and ¥ = [Eaa Eab}, since ¥ = 27 we have 3,, and X, symetric and
Xp y Y
S = 25,
Then we have that:
Moy = Mg + Sy (X6 — )

1 (22)
Z:a\b = Eaa - Z:abzbb 2ba
We consider yy11 as Xq, YN S Xp, € aS Xgq, k as Xy, and kT as Y.
We find
m(xyt1) = kT Ky'Y (23)
oo(xnt1) = c— kT Ky'k
|

Question 3. Implement the Gaussian Process model in Python.



