EQ2415 — Machine Learning and Data Science
HT22

Tutorial 3 A. Honoré, A. Ghosh

1 Kernel substitution & Support Vector Machine

Material: Bishop’s Book, chapter 7.1.1, 7.1.2, 7.1.3

Typically, we encounter problems involving parametric models where we have to learn the mapping
from an input x to an output vector y, and we assume that this mapping is parameterized by an unknown
parameter vector w. The idea is that during the learning process, we have to learn w s.t. the output
provided by the parametric model (denoting this by y (x;w)) and the meausured output (from given
data) is as close as possible (this is mathematically realized in terms of a cost function).

But sometimes, we maybe interested in learning another class of methods that are memory-based.
These methods, crudely speaking, are based on defining a metric that quantifies the similarity between
two vectors in the input space and require storing (memorizing) the entire training dataset. For making
predictions on unseen data (test data), they require some form of similarity comparison with some / all
of the stored training data points, making the inference process quite tedious.

1.1 Linear setup
We consider the classical two-class classification problem using a linear setup
y(x;w) =w'¢(x)+b (1)

where, a nonlinear feature transformation on the original input x is applied. Using the idea of kernels that
has been introduced in the previous tutorial, we can make a dual representation of (1) that enables us to
avoid working directly in the high-dimensional feature space characterized by ¢ (x) (we will see this later).

In support vector machines (SVMs), the problem in (1) is solved by constructing a maximum-
margin classifier. A margin is defined as the smallest distance (usually this is the perpendicular
distance) between the decision boundary and any of the samples in the training data. The location of
this decision boundary is given by a subset of the training data samples known as support vectors.

1.2 Formulation of the optimization problem (without slack)

Recall, that the maximum margin solution to (1) is found by solving

1
w*,b* = argmax { min [t,y (X,; W)] } (2)
[wlly »

w,b

Direct solution to this problem is difficult and using the scale invariance relation of w and b, we have
the alternative problem as

1
w*, b* = arg min {2||w||§} st thy (Xn;w) > 1,Vn=1,2,...,N. (3)
w,b

To solve this constrained optimization problem, formulate the Lagrangian as

£ (w,b fan}or) = Wl = 3 an (b0 (w76 () +8) 1) )

Question la. Solve the unconstrained problem in (4) and express the final learning solution in terms
of the multipliers a (this will result in the dual formulation).

Question 1b. Can you formulate (4) in terms of a quadratic programming problem using the dual
formulation?



1.3 Classifying new points

We can classify new points as

N
y(x) = Z antnk (X,%x,) + b (5)
n=1
Any data point in the training set for which a,, = 0 will not contribute to the prediction for new

points. From the condition a, (tn (WT¢ (%) + b) — 1) > 0, we have that remaining points should sat-
isfy t, (WTd) (xn) + b) = 1. These points lie on the mazimum margin hyperplane and are referred to as
support vectors.

Question 1c. Now, that we know this, what is the problem with equation (5)?

1.4 Computing the intercept

Question 1d. How can you compute the intercept b in (1) in a stable way?

1.5 Formulation of the optimization problem (with slack)

In practice, data distributions maybe overlapping to some extent, so exact separation doesn’t guarantee
a good generalization using SVMs. The trick here is to allow some points to be misclassified by
introducing slack variables £, > 0s.t. n=1,2,..., N with one slack variable per training data point.

1.5.1 Defining slack variables

Slack variables are defined as

0, on or inside the correct margin boundary
gn = )
ltn —y (Xn; W) |, otherwise

Question 2a. What will be the value of &, on
1. the wrong side of the decision boundary?
2. on the decision boundary?

3. the correct side of the decision boundary?

1.5.2 Solving the minimization

Using slack variables, the cost function analogous to (3) now becomes

N
1
w*, b = argmin{2||w||§ +C E fn} st tpy Xnyw) >1-&,,6, >0,Vn=1,2,...,N. (7)
w,b

’ n=1

The Lagrangian is then analogously formulated as To solve this constrained optimization problem, for-
mulate the Lagrangian as

1 N
£ (Wa b7 {an}r]LV:h {gn ;lzv:h {Mn}gzl) = §HWH% + C Z gn
N " N (8)
- Z Qn (tn (WT(»b (xn) + b) -1+ gn) - Z Hnn
n=1 n=1

Question 2b. Can you formulate (4) in terms of a quadratic programming problem using the dual
formulation?

Question 2c. Solve the unconstrained problem in (8) and express the final learning solution in terms
of the multipliers a (this will result in the dual formulation).

Question 2d. How do you



1. predict for new data and characterize the set of support vectors?

2. Compute the intercept term?

Question 3. Bishop Prob. 7.2

Question 4. Bishop Prob. 7.4



