EQ2415 — Machine Learning and Data Science
HT22

Tutorial 4 A. Honoré, A. Ghosh

1 Neural networks

1.1 Loss function for regression and classification
Question 1. Suppose that (t,x) € R? x R? is a target/input pair for a regression problem, f is a neural

network (NN) model parameterized with a vector w.

Question la. Write the likelihood function for the distribution of a target conditional on x and w.
Assume that the noise of the model is Gaussian, that the targets component are independent and that
all components share the same noise precision .

Solution:

pltlx, w) = N(t/f(x,w), 7'1), (1)
]

Question 1b. Suppose that you are given a dataset consisting of n independent target/input pairs.
Show that maximizing the likelihood of the dataset wrt w is equivalent to minimizing the MSE wrt w.

Solution: We write the log-likelihood:

L(w,) = 1DHN(ti|f<Xi7W)75_1I)
i=1

Zth(ti|f(Xiaw)vﬁ71I)
= (2)
= =5 D2 (b1 — £, W) T (A6 — £xi,w)) + et

ﬁ n
= =23t — i, W)l
=1

Thus, minimizing the MSE is equivalent to maximizing the likelihood. Also, the noise does not matter
for the value of w that minimizes the MSE. |

Question 2. (Bishop 5.4) Suppose you are given a binary classification task. You are given a set
of n independent training data points D = {(x(;), y(i)) }i=1, where X(;) € R? and Y@y € {0,1}. In general,
for a binary classifier, the probability that an input x is classified with label y = 1 is expressed

ply = 1x) = yw (%), 3)

where yy : RY — [0, 1] is a function of the input x parameterized with W. Importantly, you are told that
the data is mislabeled with probability €. To model this situation, we can introduce a binary random
variable modeling the true and unobserved label y, of an input x. We can also introduce an unobserved
binary random variable m associated with each label, indicating whether the label is true or false.

Question 2a. How would you introduce the probability of mislabeling in the output of your classi-
fier 7

Solution: We assume that our classifier models the probability on g, instead of y. This gives for the
output of our model:

ply = 1x) = p(y = 1,m = 0[x) + p(y = 1,m = 1|x)

— p(m = 0)p(y = Lim = 0, %) + p(m = py = 1jm = 1,). @)



Now in case there was no mislabeling (m = 0) we want the output of our model to use the output of the
classifier, i.e. p(ylm = 0,x) = p(yr|x) and otherwise (m = 1), p(y|m = 1,x) = 1 — p(y,|x). Therefore:

ply=1x) =1 —¢€) -p(y, = 1|x) + € (1 — p(yr = 1]x))

—(1-€-j+e- (1) (5)

Similarly:
ply =0[x) = (1 =€) - (1 = p(yr = 1[x)) + € p(yr = 1) (©)
=(1-¢-(1-9) +ey
where we used § = p(y, = 1|x) for short. [ |

Question 2b. Write the distribution of the Bernoulli variable y|x.

Solution: Using (5) and (6), the Bernoulli distribution on variable y can then be written:
plylx) = [p(y = 1x)][1 — p(y = 1))~
— (1= @19 e (1= )" @)

here the second line does not follow directly from the first, rather we write the distribution by looking
at the factors of (1 — €) and € that remains for y =0 and y = 1. [ |

(7)

Question 2c. Show that the negative likelihood function on the dataset corresponds to the cross
entropy function when € = 0.

Solution: Since the data samples are independent, the likelihood is the product of the marginal
likelihood of each sample:

E=—In]]p(ywlxam)
i=1
== {1 =€) - (§@)?D (1 — @) YO + e+ (1= §@)"@ ()" )]
i=1
When € = 0 we find the cross-entropy function:

n
E ==Y yuhgo] + (1 —ym) [l — i) (9)
=1

1.2 Standard results on activation functions

Let us consider a real valued functions h : R — R. We calculate the derivative of h wrt to its argument
x € R for different values of h.
Question 1.

(10)



Solution:

—T

roN_ €
W (x) = 1+ e2)2
j— e_x
" Ty
- 1 e "
S l4eTl4e® (11)
14+e™*-1
=M=
1
— h(@)(1 - 1)
= h(z)(1 = h(z))
]
Question 2.
h(z) = tanh(x) = % (12)
Solution: ( \( ) \( )
iy (e t+e )(e" +e ") — (e —e ")(e" —e™”
h (J?) - (ea: + efw)Z
, e — e\ (13)
W =1- (o)
B (z) =1 — h(x)?
|
Question 3.
h(z) = max(0, z) (14)
Solution: 0 0
/ _ x <
W (w) = { 1 otherwise (15)
|

1.3 Multi-layer perceptron

Suppose you are given n data points for a regression or classification task in the form of two matrices:
X € R and Y € R"*9, Note that this time the data and target vectors are row vectors. This is the
standard notation in ML.

In what follows, we will derive the back-propagation update rules for an artificial neural network
composed of 1 hidden layer with m hidden neurons and a component wise sigmoid activation function o.
We denote the input weight matrix by W) € R¥*™ and the output weight matrix by W) e R4,

Question 0. Draw the network. Specify the meaning of the edge and nodes in terms of the pa-
rameters, inputs and outputs of the network.

Question 1. Express the output of the network Y € R™ 4 in terms of the network parameters and
activation function.
Solution:

Y =o(XWO)w® (16)



Let us denote A = o(XW M),
We train the NN to minimize the MSE loss wrt both W) and W®). The loss can be written:
N 1 -
EY)=—|Y -Y|3
(V) = 5 IV = Y13
Iy 1
LS L
k=1j=1
Question 2. (Back-propagation update rules.)
Question 2a. Calculate the Jacobian matrix of E(Y) wrt W2 e R4

OE(Y)
oW’

Hint: You can first derive the value of every index, and then find the Jacobian in matrix form.

Solution: .
> n ~
OE(Y) _ l Z Z la(ylm Yk.j)
2 2
awz(,j) nia j=1 2 ow (,])
1 10k — Yig)? Oy
DD I ey et
nio 2 Ok (,])
We have .
Yk, = Zak,lwl j
1=1
Thus .
OE(Y) 1,
2y — Z(ykg yk,j)ak I
aw;,]) " k=1
And in matrix form: .
OE(Y) Ty
e ~ At V1)

Question 2b. What is the derivative of the composition of scalar functions: o fohog ?

Solution:

(lofohog)(z)=g'(x) N og(x) fohog(x)-I'ofohog(x)

Question 2c. Calculate the Jacobian matrix of E(Y) wrt W1 e Rxm;

Solution:

OE(Y) _ 19 XWW] | do(x)
owaw —n oW ox

N
Xw oy 0A
- %XT [rXWO) (1 = o(xw D)o (=)W',

where ® denotes the Hadamart product of matrices (element wise product).

(19)



Question 2d. Write the update rule for W) and W), assuming that the network is trained us-
ing batch gradient descent and with learning rate > 0. Suppose that we are computing the update rule
for step k + 1, i.e. we can denote Yy, the output of the network when the weights are W,gl) and W,gQ).

Solution: .
OE(Y)
1 1
o (D) r(2)
Ve WD W (26)
2 9 OE(Y)
W1§+)1 = ng - T aw®
7o ® @
ks YV V¥
|

Question 3. Implement backprop for this 1 hidden layer neural network example !



