
EQ2415 – Machine Learning and Data Science
HT22

Tutorial 4 A. Honoré, A. Ghosh

1 Neural networks

1.1 Loss function for regression and classification

Question 1. Suppose that (t,x) ∈ Rq ×Rd is a target/input pair for a regression problem, f is a neural
network (NN) model parameterized with a vector w.

Question 1a. Write the likelihood function for the distribution of a target conditional on x and w.
Assume that the noise of the model is Gaussian, that the targets component are independent and that
all components share the same noise precision β.
Solution:

p(t|x,w) = N (t|f(x,w), β−1I), (1)

■

Question 1b. Suppose that you are given a dataset consisting of n independent target/input pairs.
Show that maximizing the likelihood of the dataset wrt w is equivalent to minimizing the MSE wrt w.

Solution: We write the log-likelihood:

L(w, β) = ln

n∏
i=1

N (ti|f(xi,w), β−1I)

=

n∑
i=1

lnN (ti|f(xi,w), β−1I)

= −1

2

n∑
i=1

(ti − f(xi,w))T (βI)(ti − f(xi,w)) + cst

= −β

2

n∑
i=1

||ti − f(xi,w)||2

(2)

Thus, minimizing the MSE is equivalent to maximizing the likelihood. Also, the noise does not matter
for the value of w that minimizes the MSE. ■

Question 2. (Bishop 5.4) Suppose you are given a binary classification task. You are given a set
of n independent training data points D = {(x(i), y(i))}ni=1, where x(i) ∈ Rd and y(i) ∈ {0, 1}. In general,
for a binary classifier, the probability that an input x is classified with label y = 1 is expressed

p(y = 1|x) = yW (x), (3)

where yW : Rd → [0, 1] is a function of the input x parameterized with W . Importantly, you are told that
the data is mislabeled with probability ϵ. To model this situation, we can introduce a binary random
variable modeling the true and unobserved label yr of an input x. We can also introduce an unobserved
binary random variable m associated with each label, indicating whether the label is true or false.

Question 2a. How would you introduce the probability of mislabeling in the output of your classi-
fier ?

Solution: We assume that our classifier models the probability on yr instead of y. This gives for the
output of our model:

p(y = 1|x) = p(y = 1,m = 0|x) + p(y = 1,m = 1|x)
= p(m = 0)p(y = 1|m = 0,x) + p(m = 1)p(y = 1|m = 1,x).

(4)
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Now in case there was no mislabeling (m = 0) we want the output of our model to use the output of the
classifier, i.e. p(y|m = 0,x) = p(yr|x) and otherwise (m = 1), p(y|m = 1,x) = 1− p(yr|x). Therefore:

p(y = 1|x) = (1− ϵ) · p(yr = 1|x) + ϵ · (1− p(yr = 1|x))
= (1− ϵ) · ŷ + ϵ · (1− ŷ)

(5)

Similarly:
p(y = 0|x) = (1− ϵ) · (1− p(yr = 1|x)) + ϵ · p(yr = 1|x)

= (1− ϵ) · (1− ŷ) + ϵ · ŷ
(6)

where we used ŷ = p(yr = 1|x) for short. ■

Question 2b. Write the distribution of the Bernoulli variable y|x.

Solution: Using (5) and (6), the Bernoulli distribution on variable y can then be written:

p(y|x) = [p(y = 1|x)]y[1− p(y = 1|x)]1−y

= (1− ϵ) · (ŷ)y(1− ŷ)1−y + ϵ · (1− ŷ)y(ŷ)1−y,
(7)

here the second line does not follow directly from the first, rather we write the distribution by looking
at the factors of (1− ϵ) and ϵ that remains for y = 0 and y = 1. ■

Question 2c. Show that the negative likelihood function on the dataset corresponds to the cross
entropy function when ϵ = 0.

Solution: Since the data samples are independent, the likelihood is the product of the marginal
likelihood of each sample:

E = − ln

n∏
i=1

p(y(i)|x(i))

= −
n∑

i=1

ln[(1− ϵ) · (ŷ(i))y(i)(1− ŷ(i))
1−y(i) + ϵ · (1− ŷ(i))

y(i)(ŷ(i))
1−y(i) ]

(8)

When ϵ = 0 we find the cross-entropy function:

E = −
n∑

i=1

y(i) ln[ŷ(i)] + (1− y(i)) ln[1− ŷ(i)] (9)

■

1.2 Standard results on activation functions

Let us consider a real valued functions h : R → R. We calculate the derivative of h wrt to its argument
x ∈ R for different values of h.

Question 1.

h(x) = σ(x) =
1

1 + e−x
(10)
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Solution:

h′(x) = − −e−x

(1 + e−x)2

=
e−x

(1 + e−x)2

=
1

1 + e−x

e−x

1 + e−x

= h(x)
1 + e−x − 1

1 + e−x

= h(x)(1− 1

1 + e−x
)

= h(x)(1− h(x))

(11)

■

Question 2.

h(x) = tanh(x) =
ex − e−x

ex + e−x
(12)

Solution:

h′(x) =
(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2

h′(x) = 1−
(
ex − e−x

ex + e−x

)2

h′(x) = 1− h(x)2

(13)

■

Question 3.
h(x) = max(0, x) (14)

Solution:

h′(x) =

{
0 x ≤ 0
1 otherwise

(15)

■

1.3 Multi-layer perceptron

Suppose you are given n data points for a regression or classification task in the form of two matrices:
X ∈ Rn×d and Y ∈ Rn×q. Note that this time the data and target vectors are row vectors. This is the
standard notation in ML.

In what follows, we will derive the back-propagation update rules for an artificial neural network
composed of 1 hidden layer with m hidden neurons and a component wise sigmoid activation function σ.
We denote the input weight matrix by W (1) ∈ Rd×m, and the output weight matrix by W (2) ∈ Rm×q.

Question 0. Draw the network. Specify the meaning of the edge and nodes in terms of the pa-
rameters, inputs and outputs of the network.

Question 1. Express the output of the network Ŷ ∈ Rn×q in terms of the network parameters and
activation function.
Solution:

Ŷ = σ(XW (1))W (2) (16)
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Let us denote A = σ(XW (1)). ■

We train the NN to minimize the MSE loss wrt both W (1) and W (2). The loss can be written:

E(Ŷ ) =
1

2n
||Ŷ − Y ||2F

=
1

n

n∑
k=1

q∑
j=1

1

2
(ŷk,j − yk,j)

2.
(17)

Question 2. (Back-propagation update rules.)

Question 2a. Calculate the Jacobian matrix of E(Ŷ ) wrt W (2) ∈ Rm×q:

∂E(Ŷ )

∂W (2)
. (18)

Hint: You can first derive the value of every index, and then find the Jacobian in matrix form.

Solution:
∂E(Ŷ )

∂w
(2)
i,j

=
1

n

n∑
k=1

q∑
j=1

1

2

∂(ŷk,j − yk,j)
2

∂w
(2)
i,j

=
1

n

n∑
k=1

q∑
j=1

1

2

∂(ŷk,j − yk,j)
2

∂ŷk,j

∂ŷk,j

w
(2)
i,j

(19)

We have

ŷk,j =

m∑
l=1

ak,lw
(2)
l,j . (20)

Thus
∂E(Ŷ )

∂w
(2)
i,j

=
1

n

n∑
k=1

(ŷk,j − yk,j)ak,i (21)

And in matrix form:
∂E(Ŷ )

∂W (2)
=

1

n
AT (Ŷ − Y ) (22)

■

Question 2b. What is the derivative of the composition of scalar functions: l ◦ f ◦ h ◦ g ?

Solution:
(l ◦ f ◦ h ◦ g)′(x) = g′(x) · h′ ◦ g(x) · f ′ ◦ h ◦ g(x) · l′ ◦ f ◦ h ◦ g(x) (23)

■

Question 2c. Calculate the Jacobian matrix of E(Ŷ ) wrt W (1) ∈ Rd×m:

∂E(Ŷ )

∂W (1)
. (24)

Solution:
∂E(Ŷ )

∂W (1)
=

1

n

∂[XW (1)]

∂W (1)
·

[
∂σ(x)

∂x

∣∣∣∣
XW (1)

⊙

(
∂E

∂Ŷ
· ∂Ŷ
∂A

)]

=
1

n
XT

[
σ(XW (1))(1− σ(XW (1))⊙

(
(Ŷ − Y )W (2)T

)]
,

(25)

where ⊙ denotes the Hadamart product of matrices (element wise product). ■
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Question 2d. Write the update rule for W (1) and W (2), assuming that the network is trained us-
ing batch gradient descent and with learning rate η > 0. Suppose that we are computing the update rule

for step k + 1, i.e. we can denote Ŷk, the output of the network when the weights are W
(1)
k and W

(2)
k .

Solution:

W
(1)
k+1 = W

(1)
k − η

∂E(Ŷ )

∂W (1)

∣∣∣∣∣
Ŷk,W

(1)
k ,W

(2)
k

W
(2)
k+1 = W

(2)
k − η

∂E(Ŷ )

∂W (2)

∣∣∣∣∣
Ŷk,W

(1)
k ,W

(2)
k

(26)

■

Question 3. Implement backprop for this 1 hidden layer neural network example !
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