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1 Sparse Representation

1.1 Norms

Question 1. A norm is used for quantifying a measure of distance between two vectors. But, it should
obey certain axioms in order to be called a valid norm. List all such axioms that must be followed by a
valid norm.

Question 2. You have encountered the p-norm in the slides ∥x∥p. For p < 1, is this still a norm.
If not, which property does this norm violate?

1.2 The P0 problem

Reducing the l0 norm of a vector arises in problems where we wish to reconstruct a vector b, from a
linear combination of a minimum number of columns of a matrix A. This is called a P0 problem and is
one of our principal problem of interest.

P0 : x⋆ = argmin
x∈Rm

∥x∥0 s.t. Ax = b (1)

where we have an under-determined problem setup with A ∈ Rn×m,b ∈ Rn and m > n. This problem
is in fact NP-hard.

Question 3. What is the computational complexity for solving such a problem ? Use a simple nu-
merical reasoning to illustrate your point.

Question 4. Propose two approximate formulations for the problem P0.

1.3 The spark of a matrix

A special case of P0 allow us to find a quantity called the spark.
Question 5. (a) Define the rank, nullity and spark of a matrix.

Question 5. (b) Consider a matrix that is constructed as In − Sn, where Sn is a real, skew-symmetric
matrix. Calculate the rank, nullity and spark of In − Sn. Hint: Use Schur’s determinant identity for a
block matrix, and the relation that det(A+ cT r) = det(A) + rT adj(A)c

Question 5. (c) Assume that you have an algorithm which is known for giving you the sparsest
solution x for a P0 problem. It is also assumed that the matrix A in P0 is square and full rank. One of
your friend also comes and shows you a solution y for the same problem and claims as well that it is the
sparsest. How can you resolve this conflict?

1.3.1 Some useful quantities

1.4 Greedy algorithms for P0

Finding the spark of a matrix is a combinatorial problem. There exists Greedy algorithms to solve the
P0 problem approximately.

1



1.4.1 Orthogonal Matching Pursuit

Here, we consider a pre-specified sparsity level of x is known before the start of the algorithm. We specify
this as ∥x∥0 = k. The support of x defined as Sx = {i : xi ̸= 0}, The non-zero elements of x can
be referred to as xSx . Also, recall that the ℓ0 norm of x is equal to the cardinality of the support set
Sx. We know that the support set is characterized as Sx = {n : xn ̸= 0}. So, now the problem is find
the k elements of this support set Sx, as we have pre-specified cardinality. A greedy solution avoids a
brute-force

(
m
k

)
search and instead tries to find an iterative solution. One such greedy algorithm is the

Orthogonal matching pursuit (OMP).

OMP is a greedy solution to the support-finding problem. We are assumed to be given as inputs: A,
b and k0 (sparsity level of x). OMP consists of the following parts:

1. Initialization

• Set k = 0 (iteration counter)

• Set initial support set S(0)
x = ϕ

• Set initial residual to be r(0) = b

• Set error threshold ε

2. Repeat until either ∥r(k)∥2 < ε or max no. of iterations is completed or ∥r(k)∥2 > ∥r(k−1)∥2

• Sweep stage: Compute errors ϵ(j) = minzj ∥ajzj−r(k−1)∥22 (find the optimal choice) and then
finding i⋆k = argminjϵ(j). This can be also done in one single step.

• Update support S(k)
x = S(k−1)

x ∪ i⋆k

• Update residual r(k) = b−AS(k)
x

A†
S(k)
x

b

• Update counter k = k + 1

3. Finally get x̂ ∈ RN with x̂S(k)
x

= A†
S(k)
x

b and remaining part as zeros.

Question 6. Show that the sweep stage is equivalent to finding i⋆k = argmaxjA
⊤r(k−1)?
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