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1 Sparse Representation

1.1 Norms

Question 1. A norm is used for quantifying a measure of distance between two vectors. But, it should
obey certain axioms in order to be called a valid norm. List all such axioms that must be followed by a
valid norm.

Solution: (a) Norm of a vector x should obey non-negativity, homogeneity, positive and the tri-

angle inequality. |

Question 2. You have encountered the p-norm in the slides ||x||,. For p < 1, is this still a norm.

If not, which property does this norm violate?

Solution: Triangle inequality is not satisfied. Show by counterexample, let x = [a 0 ... O] i
T

y:[O a ... 0] ,p<l1. |

)

1.2 The F, problem

Reducing the Iy norm of a vector arises in problems where we wish to reconstruct a vector b, from a
linear combination of a minimum number of columns of a matrix A. This is called a Py problem and is
one of our principal problem of interest.

Py: x*=argmin|x|p st. Ax=Db (1)
xER™
where we have an under-determined problem setup with A € R"*™ b € R™ and m > n. This problem

is in fact NP-hard.

Question 3. What is the computational complexity for solving such a problem ? Use a simple nu-
merical reasoning to illustrate your point.

Solution: Assume that the matrix size = m X n, if we know that the sparsity level is kg, to know
these ko points by a brute force approach, one should sweep over (,:) ) possibilities, and at each such
possibility test whether the constraint Ax = b holds or not. When n is much larger than kg, the binomial
coefficient becomes exponential in n, so exhaustive search will definitely fail. Use some numbers such as
m = 500, n = 2000, kg = 20 to convince yourself! |

Question 4. Propose two approximate formulations for the problem Fj.

Solution: e.g. introduce an € for the reconstruction error:

Py: x*=argmin|x|o s.t. ||b—Ax|| <e (2)
xER™

or use the /1 norm instead of [.

Py=P,: x*=argmin|x|; st. b=Ax (3)
xER'ﬁL

There are two main approaches for solving the Py problem:
e Finding the support of x: Discrete problem and solved often using greedy algorithms.

e Smoothing penalty schemes: [; minimization.



1.3 The spark of a matrix

A special case of Py allow us to find a quantity called the spark.
Question 5. (a) Define the rank, nullity and spark of a matrix.

Solution: Rank of a matrix A is the largest number of linearly independent columns of A.
Nullity of a matrix is the dimension of the nullspace i.e. dimension of the set {x: Ax = 0,x # 0}.
The spark of a matrix is the smallest number of linearly dependent columns.

x[los.t.Ax =0,x #0 (4)
|

spark (A) = mingegm

Question 5. (b) Consider a matrix that is constructed as I,, — S,,, where S,, is a real, skew-symmetric
matrix. Calculate the rank, nullity and spark of I,, — S,,. Hint: Use Schur’s determinant identity for a
block matrix, and the relation that det(A + c¢Tr) = det(A) + rTadj(A)c

Solution: The trick here is to show that I,, — S,, is non-singular, i.e. it is full rank. This can be shown
by mathematical induction:
for n = 2, we have

_ 1 aq
- —a 1
det (I, — S) = 1 +a? > 0 as a; is real.
for n = k, we assume I — S is full rank and has a positive determinant. Then for n = k + 1, we have:

det (T — S) = det ([Ik 5 a’““])
—ag 1

= det, (I}C — Sk) det (1 + akTH(Ik — Sk)_lak+1> (6)
= det (I — Si) + aj, adj (I — S) ap41 > 0

One can also show that the adjugate of I, — Sy, is in fact positive semidefinite. Hence, it is non-singular
and full rank. So, rank is n, nullity is 0, spark is n + 1. (think why?). |

Question 5. (¢) Assume that you have an algorithm which is known for giving you the sparsest
solution x for a Py problem. It is also assumed that the matrix A in P, is square and full rank. One of
your friend also comes and shows you a solution y for the same problem and claims as well that it is the
sparsest. How can you resolve this conflict?

Solution: Check if ||x||o < ispark (A) implying uniqueness through spark. [ ]

1.3.1 Some useful quantities

1.4 Greedy algorithms for F,

Finding the spark of a matrix is a combinatorial problem. There exists Greedy algorithms to solve the
Py problem approximately.

1.4.1 Orthogonal Matching Pursuit

Here, we consider a pre-specified sparsity level of x is known before the start of the algorithm. We specify
this as ||x|lo = k. The support of x defined as Sx = {i : #; # 0}, The non-zero elements of x can
be referred to as xs,. Also, recall that the ¢y norm of x is equal to the cardinality of the support set
Sx. We know that the support set is characterized as Sx = {n : &, # 0}. So, now the problem is find
the k elements of this support set Sk, as we have pre-specified cardinality. A greedy solution avoids a

brute-force (’;’) search and instead tries to find an iterative solution. One such greedy algorithm is the



Orthogonal matching pursuit (OMP).

OMP is a greedy solution to the support-finding problem. We are assumed to be given as inputs: A,
b and ko (sparsity level of x). OMP consists of the following parts:

1. Initialization

e Set k =0 (iteration counter)

e Set initial support set SO = )
e Set initial residual to be r(®) = b

e Set error threshold ¢
2. Repeat until either ||r(®)||y < ¢ or max no. of iterations is completed or ||r(®) ||y > [[r(*=D) ||,
e Sweep stage: Compute errors €(j) = min.; [|a;z; —r* =13 (find the optimal choice) and then
finding i} = argmin;e(j). This can be also done in one single step.
e Update support S;gk) = Sikil) Uiy
e Update residual r®) =b — A ;AL )b
e Update counter k =k + 1

3. Finally get & € RN with Xgk) = AL(k)b and remaining part as zeros.
Question 6. Show that the sweep stage is equivalent to finding i} = argmaxjATr(k_l)?

Solution: ‘ ) )
€(j) = min [la;z; — b3
J

a'b
— b _ . J 2
” aj <a§> H2 (7)

(a/b)’

13

= bl5 — |l I3

Replace b by r*~1) and we see that

(aTrwl))?

i, = argmin;e(j) = argmax;||-— 3 (8)

i3

and this means searching for the index that gives the largest amplitude of ATr(*=1) where columns of
A are normalized. |



