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1 Sparse Representation

1.1 Norms

Question 1. A norm is used for quantifying a measure of distance between two vectors. But, it should
obey certain axioms in order to be called a valid norm. List all such axioms that must be followed by a
valid norm.

Solution: (a) Norm of a vector x should obey non-negativity, homogeneity, positive and the tri-
angle inequality. ■

Question 2. You have encountered the p-norm in the slides ∥x∥p. For p < 1, is this still a norm.
If not, which property does this norm violate?

Solution: Triangle inequality is not satisfied. Show by counterexample, let x =
[
a 0 . . . 0

]⊤
,

y =
[
0 a . . . 0

]⊤
, p < 1. ■

1.2 The P0 problem

Reducing the l0 norm of a vector arises in problems where we wish to reconstruct a vector b, from a
linear combination of a minimum number of columns of a matrix A. This is called a P0 problem and is
one of our principal problem of interest.

P0 : x⋆ = argmin
x∈Rm

∥x∥0 s.t. Ax = b (1)

where we have an under-determined problem setup with A ∈ Rn×m,b ∈ Rn and m > n. This problem
is in fact NP-hard.

Question 3. What is the computational complexity for solving such a problem ? Use a simple nu-
merical reasoning to illustrate your point.

Solution: Assume that the matrix size = m × n, if we know that the sparsity level is k0, to know
these k0 points by a brute force approach, one should sweep over

(
n
k0

)
possibilities, and at each such

possibility test whether the constraint Ax = b holds or not. When n is much larger than k0, the binomial
coefficient becomes exponential in n, so exhaustive search will definitely fail. Use some numbers such as
m = 500, n = 2000, k0 = 20 to convince yourself! ■

Question 4. Propose two approximate formulations for the problem P0.

Solution: e.g. introduce an ϵ for the reconstruction error:

P̂0 : x⋆ = argmin
x∈Rm

∥x∥0 s.t. ||b−Ax|| ≤ ϵ (2)

or use the l1 norm instead of l0.

P̂0 ≡ P1 : x⋆ = argmin
x∈Rm

∥x∥1 s.t. b = Ax (3)

There are two main approaches for solving the P0 problem:

• Finding the support of x: Discrete problem and solved often using greedy algorithms.

• Smoothing penalty schemes: l1 minimization.

■
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1.3 The spark of a matrix

A special case of P0 allow us to find a quantity called the spark.
Question 5. (a) Define the rank, nullity and spark of a matrix.

Solution: Rank of a matrix A is the largest number of linearly independent columns of A.
Nullity of a matrix is the dimension of the nullspace i.e. dimension of the set {x : Ax = 0,x ̸= 0}.
The spark of a matrix is the smallest number of linearly dependent columns.

spark (A) = minx∈Rm∥x∥0s.t.Ax = 0,x ̸= 0 (4)

■

Question 5. (b) Consider a matrix that is constructed as In − Sn, where Sn is a real, skew-symmetric
matrix. Calculate the rank, nullity and spark of In − Sn. Hint: Use Schur’s determinant identity for a
block matrix, and the relation that det(A+ cT r) = det(A) + rT adj(A)c

Solution: The trick here is to show that In − Sn is non-singular, i.e. it is full rank. This can be shown
by mathematical induction:
for n = 2, we have

I2 − S2 =

[
1 0
0 1

]
−
[
0 −a1
a1 0

]
=

[
1 a1

−a1 1

] (5)

det (Ik − Sk) = 1 + a21 ≥ 0 as a1 is real.
for n = k, we assume I− S is full rank and has a positive determinant. Then for n = k + 1, we have:

det (I− S) = det

([
Ik − Sk ak+1

−a⊤k+1 1

])
= det (Ik − Sk) det

(
1 + a⊤k+1(Ik − Sk)

−1ak+1

)
= det (Ik − Sk) + a⊤k+1adj (Ik − Sk)ak+1 ≥ 0

(6)

One can also show that the adjugate of Ik − Sk is in fact positive semidefinite. Hence, it is non-singular
and full rank. So, rank is n, nullity is 0, spark is n+ 1. (think why?). ■

Question 5. (c) Assume that you have an algorithm which is known for giving you the sparsest
solution x for a P0 problem. It is also assumed that the matrix A in P0 is square and full rank. One of
your friend also comes and shows you a solution y for the same problem and claims as well that it is the
sparsest. How can you resolve this conflict?

Solution: Check if ∥x∥0 < 1
2 spark (A) implying uniqueness through spark. ■

1.3.1 Some useful quantities

1.4 Greedy algorithms for P0

Finding the spark of a matrix is a combinatorial problem. There exists Greedy algorithms to solve the
P0 problem approximately.

1.4.1 Orthogonal Matching Pursuit

Here, we consider a pre-specified sparsity level of x is known before the start of the algorithm. We specify
this as ∥x∥0 = k. The support of x defined as Sx = {i : xi ̸= 0}, The non-zero elements of x can
be referred to as xSx . Also, recall that the ℓ0 norm of x is equal to the cardinality of the support set
Sx. We know that the support set is characterized as Sx = {n : xn ̸= 0}. So, now the problem is find
the k elements of this support set Sx, as we have pre-specified cardinality. A greedy solution avoids a
brute-force

(
m
k

)
search and instead tries to find an iterative solution. One such greedy algorithm is the
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Orthogonal matching pursuit (OMP).

OMP is a greedy solution to the support-finding problem. We are assumed to be given as inputs: A,
b and k0 (sparsity level of x). OMP consists of the following parts:

1. Initialization

• Set k = 0 (iteration counter)

• Set initial support set S(0)
x = ϕ

• Set initial residual to be r(0) = b

• Set error threshold ε

2. Repeat until either ∥r(k)∥2 < ε or max no. of iterations is completed or ∥r(k)∥2 > ∥r(k−1)∥2

• Sweep stage: Compute errors ϵ(j) = minzj ∥ajzj−r(k−1)∥22 (find the optimal choice) and then
finding i⋆k = argminjϵ(j). This can be also done in one single step.

• Update support S(k)
x = S(k−1)

x ∪ i⋆k

• Update residual r(k) = b−AS(k)
x

A†
S(k)
x

b

• Update counter k = k + 1

3. Finally get x̂ ∈ RN with x̂S(k)
x

= A†
S(k)
x

b and remaining part as zeros.

Question 6. Show that the sweep stage is equivalent to finding i⋆k = argmaxjA
⊤r(k−1)?

Solution:
ϵ(j) = min

zj
∥ajzj − b∥22

= ∥b− aj

(
a⊤j b

∥a∥22

)
∥22

= ∥b∥22 − ∥
(
a⊤j b

)2
∥a∥22

∥22

(7)

Replace b by r(k−1) and we see that

i⋆k = argminjϵ(j) = argmaxj∥
(
a⊤j r

(k−1)
)2

∥a∥22
∥22 (8)

and this means searching for the index that gives the largest amplitude of A⊤r(k−1) where columns of
A are normalized. ■
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