EQ2415 – Machine Learning and Data Science HT22

Tutorial 6

A. Honoré, A. Ghosh

Graphical models in a Bayesian framework

1 Bayesian networks

Question 1. (a) Bishop 8.1 [1]

Question 1. (b) Bishop 8.3. Also, draw the graphical model by first showing that p(a, b, c) = p(a)p(c|a)p(b|c).

2 Conditional independence

Question 2. Show both graphically and analytically if $x_1, x_2, \ldots, x_{t-1} \perp x_{t+1}, x_{t+2}, \ldots, x_T | x_t, y_t$, where y_t is assumed to depend only on x_t , then $x_1, x_2, \ldots, x_{t-1} \perp x_{t+2}, x_{t+3}, \ldots, x_T | x_t, y_t$.

Question 3. A popular architecture recent architecture that can be represented as a graphical model is a dynamical variational autoencoder (DVAE) [2]. It has been shown to perform reasonably well when applied to signal generation and modeling tasks. Here below is the graphical model of a dynamical VAE called deep Kalman filter (DKF): In the inference mode, this becomes

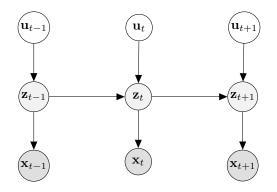


Figure 1: Graphical model of the DKF in generation mode, displayed within 3 states of \mathbf{z}_{t-1} . The arrows signify dependence between random variables in the graphical model.

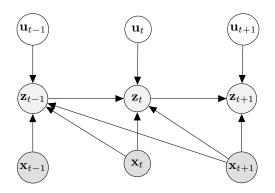


Figure 2: Graphical model of the DKF in inference mode, displayed within 3 states of \mathbf{z}_{t-1} . The arrows signify dependence between random variables in the graphical model.

(a) Write down the joint distribution of $p(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} | \mathbf{u}_{1:T})$ for the generation mode in simplified form using D-separation.

(b) Write down the joint distribution $q(\mathbf{z}_{1:T}|\mathbf{x}_{1:T}, \mathbf{u}_{1:T})$ for the inference mode in simplified form using D-separation.

3 Markov random fields

Question 5. (a) Bishop 8.12

Question 5. (b) Bishop 8.13

References

- Bishop, Christopher M., and Nasser M. Nasrabadi. Pattern recognition and machine learning. Vol. 4. No. 4. New York: springer, 2006.
- [2] Girin, Laurent, et al. "Dynamical Variational Autoencoders: A Comprehensive Review." Foundations and Trends in Machine Learning 15.1-2 (2021): 1-175.