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Tutorial 6 A. Honoré, A. Ghosh

Graphical models in a Bayesian framework

1 Bayesian networks

Question 1. (a) Bishop 8.1 [1]

Solution: We know by the directed graph factorization, for a directed acyclic graph (DAG) with K
nodes, the joint distribution is given by

p (x) =

K∏
k=1

p (xk|pak) , (1)

where pak refers to the set of parent nodes of xk. Also, by the property of directed acyclic graphs
pak always contains members from x1, x2, . . . , xk−1. We need to show that if p (x) obeys (1) then
p (x) is normalized correctly provided each conditional distribution is correctly normalized. This is
straightforward to show by using the sum and product rules of probability:∫

p (x) dx =

∫ K∏
k=1

p (xk|pak) dx

=

∫ ∫
. . .

∫
(K times)

K∏
k=1

p (xk|pak) dx1dx2 . . . dxK

=

∫ ∫
. . .

∫
(K times)

p (x1) p (x2|pa2) . . . p (xK |paK) dx1dx2 . . . dxK

=

∫
p (xK |paK)

[∫
p
(
xK−1|paK−1

)
. . .

[∫
p (x2|pa2)

[∫
p (x1) dx1

]
dx2

]
. . . dxK−1

]
dxK

(2)
If every conditional distribution is normalized i.e.

∫
p (xk|pak) dxk = 1, then the above result also goes

to 1. Hence,
∫
p (x) dx = 1 (since each of the products go to 1). ■

Question 1. (b) Bishop 8.3. Also, draw the graphical model by first showing that p(a, b, c) =
p(a)p(c|a)p(b|c).

Solution: Using the table 8.2, first find p(a, b) by using sum-rule. You should be able to get One

a b p(a, b)
0 0 0.336
0 1 0.264
1 0 0.256
1 1 0.144

Table 1: Probabilty mass function for p(a, b)

more step of the sum rule on Table 1, gives p(a = 0) = 0.6, p(a = 1) = 0.4 and p(b = 0) = 0.592, p(b =
1) = 0.408. Also, we can find p(c = 0) = 0.48, p(c = 1) = 0.52. Now try comparing p(a, b) and p(a)p(b)
to check independence.

Similarly, if you compute for p(a, c) and (b, c), you can check that For one case say a = 0, b = 0, c = 0,
you can show that p(a = 0, b = 0|c = 0) = 0.4 = p (b = 0|c = 0) p (a = 0|c = 0). Furthermore, using this
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a c p(a, b)
0 0 0.240
0 1 0.360
1 0 0.240
1 1 0.160

Table 2: Probabilty mass function for p(a, c)

b c p(b, c)
0 0 0.384
0 1 0.208
1 0 0.096
1 1 0.312

Table 3: Probabilty mass function for p(b, c)

conditional independence p(a, b|c) = p(a|c)p(b|c), you can show that

p(a, b, c) = p(a)p(c|a)p(b|a, c)

= p(a)p(c|a)p(a, b, c)
p(a, c)

= p(a)p(c|a)p(a, b|c)p(c)
p(a|c)p(c)

= p(a)p(c|a)p(a|c)p(b|c)p(c)
p(a|c)p(c)

= p(a)p(c|a)p(b|c)

(3)

a c b

Figure 1: Graphical model for solution 1. (b), where c is observed.

■

2 Conditional independence

Question 2. Show both graphically and analytically if x1, x2, . . . , xt−1 ⊥⊥ xt+1, xt+2, . . . , xT |xt, yt, where
yt is assumed to depend only on xt, then x1, x2, . . . , xt−1 ⊥⊥ xt+2, xt+3, . . . , xT |xt, yt.

Solution:

Analytical solution: We know from the question that x1, x2, . . . , xt−1 ⊥⊥ xt+1, xt+2, . . . , xT |xt, yt,
with yt being only function of xt. Writing this out in terms of probability means that

p (x1, x2, . . . , xt−1, xt+1, xt+2, . . . , xT |xt, yt) = p (x1, x2, . . . , xt−1|xt, yt) p (xt+1, xt+2, . . . , xT |xt, yt) (4)

Now, if we would like to find p (x1, x2, . . . , xt−1, xt+2, . . . , xT |xt, yt), we have:

p (x1, x2, . . . , xT |xt, yt) =
∑
xt+1

p (x1, x2, . . . , xt−1|xt, yt) p (xt+1, xt+2, . . . , xT |xt, yt)

= p (x1, x2, . . . , xt−1|xt, yt)
∑
xt+1

p (xt+1, xt+2, . . . , xT |xt, yt)

= p (x1, x2, . . . , xt−1|xt, yt) p (xt+2, . . . , xT |xt, yt)
∑
xt+1

p (xt+1|xt+2, . . . , xT , xt, yt)

= p (x1, x2, . . . , xt−1|xt, yt) p (xt+2, . . . , xT |xt, yt)
(5)
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Graphical solution: We can actually think of xi being in a Markovian dependency with yt coming
directly from xt. Then xt is a head to tail node with the tail part coming from xt+1:T and head part
coming from x1:t−1. ■

Question 3. A popular architecture recent architecture that can be represented as a graphical model
is a dynamical variational autoencoder (DVAE) [2]. It has been shown to perform reasonably well when
applied to signal generation and modeling tasks. Here below is the graphical model of a dynamical VAE
called deep Kalman filter (DKF): In the inference mode, this becomes

ut−1 ut ut+1

zt−1

xt−1
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Figure 2: Graphical model of the DKF in generation mode, displayed within 3 states of zt−1. The arrows
signify dependence between random variables in the graphical model.
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Figure 3: Graphical model of the DKF in inference mode, displayed within 3 states of zt−1. The arrows
signify dependence between random variables in the graphical model.

(a) Write down the joint distribution of p (x1:T , z1:T |u1:T ) for the generation mode in simplified form
using D-separation.

Solution: We can write the joint distribution as

p (x1:T , z1:T |u1:T ) =

T∏
t=1

p (xt|x1:t−1, z1:t,u1:t) p (zt|z1:t−1,x1:t−1,u1:t)

=

T∏
t=1

p (xt|zt) p (zt|zt−1,ut)

(6)

This simplifcation is due to D-separation. This is because zt is a head-to-tail node, so that xt ⊥⊥
z1:t−2,u1:t,x1:t−1|zt. Similar arguments for zt−1 give us zt ⊥⊥ z1:t−2,u1:t,x1:t−1|zt−1 leading to simpli-
fication of the second term. ■

(b) Write down the joint distribution q (z1:T |x1:T ,u1:T ) for the inference mode in simplified form us-
ing D-separation.
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Solution: We can write the joint distribution as

q (z1:T |x1:T ,u1:T ) =

T∏
t=1

q (zt|z1:t−1,x1:T ,u1:T )

=

T∏
t=1

q (zt|zt−1,xt:T ,ut:T )

(7)

This simplifcation is again due to D-separation. This is because zt−1 is a head-to-tail node, so that it
‘blocks’ / accumulates the information coming from x1:t−1, z1:t−2,u1:t−1. ■

3 Markov random fields

Question 5. (a) Bishop 8.12

Solution: Considering we have M distinct random variables, the ith variable can be connected to
M − 1 other variables. So, in total we can have M(M − 1) number of connections. But since in an
undirected graphical model the connection between nodes i and j is same as the connection between j
and i, we actually have M(M − 1)/2 distinct connections. Finally to obtain the number of such graphs,
we note for each connection, we have two choices - either the connection is present in the graph or not,
so in total we have 2M(M−1)/2 such distinct undirected graphs from M distinct random variables. ■

Question 5. (b) Bishop 8.13

Solution: The difference between the energy functions for different states of xj is

E (xj = x0,y)− E (xj = x1,y) = hx0 − η
∑
i

x0yi − β
∑
i

x0xi − hx1 − η
∑
i

x1yi − β
∑
i

x1xi

= h(x0 − x1)− η
∑
i

(x0 − x1)yi − β
∑
i

(x0 − x1)xi

(8)

So, we can see that the difference in energy functions depend on the neighbouring points of xj (that
actually form the cliques), i.e. local to xj in the graph (assuming other variables fixed). ■
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