EQ2415 – Machine Learning and Data Science HT22

Tutorial 8

A. Honoré, A. Ghosh

1 Graphical models – EM

Chapter 9 - EM (Bishop).

1.1 K-means

Suppose $N \in \mathbb{N}_*$ data points $\mathbf{x}_n \in \mathbb{R}^d$ for $n = 1, \dots, N$. Suppose we can measure distances in \mathbb{R}^d with a bivariate function d, e.g. $d(\mathbf{x}_n, \mathbf{x}_{n'}) = ||\mathbf{x}_n - \mathbf{x}_{n'}||_2$. We want to assign all our data points to one of $K \in \mathbb{N}_*$ clusters, characterized by their means $\boldsymbol{\mu}_k \in \mathbb{R}^d$ for $k = 1, \dots, K$. We use the notation $r_{nk} \in \{0, 1\}$, where $r_{nk} = 1$ and $r_{nk'} = 0$ for $k' \neq k$ if point n is assigned to the k-th cluster.

The goal of K-means clustering is to

- 1. learn the means of the each cluster and
- 2. assign every point in the data set to one of the clusters.

Question 1 Write the cost function to minimize for the K-means algorithm, in terms of the \mathbf{x}_n , r_{nk} , μ_k and the distance function.

K-means is an iterative algorithm. This means that at iteration i, the algorithm uses information from the previous iteration i - 1 to minimize a cost function J.

Assume that at iteration *i*, you have an estimate for $\boldsymbol{\mu}_k$: $\boldsymbol{\mu}_k^{(i-1)}$.

Question 2 What are the optimal values for $r_{nk}^{(i)}$ according to the current estimate μ_k ?

Question 3 How can you optimize $\mu_k^{(i)}$ based on the new estimates for $r_{nk}^{(i)}$?

Question 4 Assume that you repeat the two steps above until the cost function J stops decreasing. What convergence guarantees do you have with such an algorithm ?

Applying K-means to a dataset is a way to find underlying clusters in the data. Clusters are structures in data that can be useful for inference tasks e.g. classification, if the clusters turn out to correspond to certain classes of interest. K-means, although very powerful because simple to implement, has a number of limitations.

- 1. It assigns every point in the dataset to one and only one cluster, this kind of hard assignment might not be adequate to points lying midway to two (or more) cluster centers.
- 2. The cluster mean is not robust to outliers
- 3. Euclidean distance is not appropriate for categorical variables.
- 4. The shape of the clusters are limited.

An underlying structure in data is also called a latent structure, and it is often better to use a framework that is more general than hard cluster assignment to represent and infer the structure. We will see that a probabilistic formulation leads to more general solution for latent structure inference.

1.2 Probabilistic K-means

Let us denote $\mathbf{X} = {\{\mathbf{x}_n\}_{n=1}^N}$ the set of observed training data (see previous section).

The probabilistic interpretation of K-means arises by defining the clusters in terms of distributions rather than simply by there means. We will aim at maximizing the likelihood of the dataset **X** wrt to a mixture of Gaussian model:

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left[\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right],$$
(1)

Note:

- 1. It is possible to reach infinite likelihood if a mean = a datapoint
- 2. Identifiability problem: K! combinations of parameters lead to the same likelihood.

Question 1. What condition on μ_k, π_k and Σ_k must be satisfied at a maximum likelihood ?

Question 2. Using the equations derived above, find an iterative algorithm to maximize the loglikehood of data wrt to the parameters of a Gaussian Mixture model.

Question 3. (Relation with K-means)

What theoretical assumption on the mixture model do we have to make for the algorithm we derived to reduce to K-means ?

1.3 A graph for Gaussian mixture models

In a Gaussian mixture model, we assume that input data $\mathbf{x} \in \mathbb{R}^d$ are emitted by a Gaussian distribution, chosen at random among $K \in \mathbb{N}_*$ possible distributions. The parameters of the distributions can be collected in sets $\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}$ where, e.g. $\boldsymbol{\mu} = \{\boldsymbol{\mu}_1, \cdots, \boldsymbol{\mu}_K\}$ with appropriate dimensions.

The choice of the emission distribution can be modeled with a categorical unobserved (i.e. latent) variable $\mathbf{z} \in \{0,1\}^K$.

Question 1. Draw a directed graphical model representing a Gaussian mixture model.

Consider the directed graph for a Gaussian mixture model shown in Figure ??. Suppose that you get N data points $\mathbf{X} = {\mathbf{x}_n}$ and you want to infer the corresponding values for the latent variables $\mathbf{Z} = {\mathbf{z}_n}$.

Question 2. By making use of the d-separation criterion discussed in Section 8.2 (Bishop, 2006), write the factorization for the joint distribution $p(\mathbf{x}_n, \mathbf{z}_n)$ (omitting the parameters for simplicity).

Question 3. Show that the posterior distribution of the latent variables $p(\mathbf{Z}|\mathbf{X})$ factorizes as a product of posterior distributions for the different data points.

1.4 Expectation-Maximization (EM)

(Bishop Ex. 9.4) Suppose we wish to use the EM algorithm to maximize the posterior distribution over parameters $p(\theta|\mathbf{X})$ for a model containing latent variables \mathbf{Z} , where \mathbf{X} is the observed data set. Show that the E step remains the same as in the maximum likelihood case, whereas in the M step the quantity to be maximized is given by

$$Q'(\theta, \theta^{old}) = Q(\theta, \theta^{old}) + \ln p(\theta)$$
⁽²⁾

where $Q(\theta, \theta^{old})$ is defined in (3).

Recall, read the details in section 9.3 (Bishop, 2006): In the classical formulation of EM, we aim at finding a maximum likelihood solution for the parameter θ of a statistical model, i.e. we aim at maximizing $\ln p(\mathbf{X}|\theta)$ wrt θ .

For this we use an iterative approach (1) first we evaluate the posterior of the latent variable wrt some estimate of the parameters θ^{old} , (2) we maximize, wrt θ , a function

$$Q(\theta, \theta^{old}) = E_{\mathbf{Z}|\mathbf{X}, \theta^{old}} \left[\ln p(\mathbf{X}, \mathbf{Z}|\theta) \right].$$
(3)