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Tutorial 8 A. Honoré, A. Ghosh

1 Graphical models – EM

Chapter 9 - EM (Bishop).

1.1 K-means

Suppose N ∈ N∗ data points xn ∈ Rd for n = 1, · · · , N . Suppose we can measure distances in Rd

with a bivariate function d, e.g. d(xn,xn′) = ||xn − xn′ ||2. We want to assign all our data points to
one of K ∈ N∗ clusters, characterized by their means µk ∈ Rd for k = 1, · · · ,K. We use the notation
rnk ∈ {0, 1}, where rnk = 1 and rnk′ = 0 for k′ ̸= k if point n is assigned to the k-th cluster.

The goal of K-means clustering is to

1. learn the means of the each cluster and

2. assign every point in the data set to one of the clusters.

Question 1 Write the cost function to minimize for the K-means algorithm, in terms of the xn, rnk,
µk and the distance function.
Solution: Find rnk and µk which minimize

J(rnk,µk) =

N∑
n=1

K∑
k=1

rnk||xn − µk||22, (1)

■

K-means is an iterative algorithm. This means that at iteration i, the algorithm uses information
from the previous iteration i− 1 to minimize a cost function J .

Assume that at iteration i, you have an estimate for µk: µ
(i−1)
k .

Question 2 What are the optimal values for r
(i)
nk according to the current estimate µk ?

Solution:

r
(i)
nk =

{
1 if k = argminj ||xn − µ

(i−1)
j ||22

0 otherwise.
(2)

■

Question 3 How can you optimize µ
(i)
k based on the new estimates for r

(i)
nk ?

Solution: Derive and set to 0:
∂J(r

(i)
nk,µk)

∂µk

∣∣∣∣∣
µ

(i)
k

= 0

=⇒ 2

N∑
n=1

r
(i)
nk(xn − µ

(i)
k ) = 0

µ
(i)
k =

∑
n r

(i)
nkxn∑

n r
(i)
nk

(3)

■

Question 4 Assume that you repeat the two steps above until the cost function J stops decreasing.
What convergence guarantees do you have with such an algorithm ?
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Solution: Convergence guarantees to a local minima because the two steps decrease the objective
function. Not convergence guarantees to converge to a global minima because the means are initialized
randomly.

Figure 1: Example of running K-means on a 2-dimensional dataset. Bishop 2006 Figure 9.1

■
Applying K-means to a dataset is a way to find underlying clusters in the data. Clusters are structures

in data that can be useful for inference tasks e.g. classification, if the clusters turn out to correspond to
certain classes of interest. K-means, although very powerful because simple to implement, has a number
of limitations.

1. It assigns every point in the dataset to one and only one cluster, this kind of hard assignment
might not be adequate to points lying midway to two (or more) cluster centers.

2. The cluster mean is not robust to outliers

3. Euclidean distance is not appropriate for categorical variables.

4. The shape of the clusters are limited.

An underlying structure in data is also called a latent structure, and it is often better to use a
framework that is more general than hard cluster assignment to represent and infer the structure. We
will see that a probabilistic formulation leads to more general solution for latent structure inference.
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1.2 Probabilistic K-means

Let us denote X = {xn}Nn=1 the set of observed training data (see previous section).
The probabilistic interpretation of K-means arises by defining the clusters in terms of distributions

rather than simply by there means. We will aim at maximizing the likelihood of the dataset X wrt to a
mixture of Gaussian model:

ln p(X|π,µ,Σ) =

N∑
n=1

ln

[
K∑

k=1

πkN (xn|µk,Σk)

]
, (4)

Note:

1. It is possible to reach infinite likelihood if a mean = a datapoint

2. Identifiability problem: K! combinations of parameters lead to the same likelihood.

Question 1. What condition on µk, πk and Σk must be satisfied at a maximum likelihood ?

Solution: Derivatives wrt µk must be 0:

∂ ln p(X|π,µ,Σ)

∂µk

∣∣∣∣
µ⋆

k

= 0

=⇒ 0 =

N∑
n=1

∂πkN (xn|µk,Σk)
∂µk∑K

j=1 πjN (xn|µj ,Σj)
, where we derived ln wrt µk

Next, we derive the numerator (using equation (86)) from the Matrix Cookbook)

∂πkN (xn|µk,Σk)

∂µk

= πkN (xn|µk,Σk)Σ
−1(xn − µk),

Denoting γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

∈ R, we get:

0 =

N∑
n=1

γ(znk)Σ
−1(xn − µk)

Finally :

µk =
1

Nk

N∑
n=1

γ(znk)xn, with Nk =

N∑
n=1

γ(znk)

(5)

Derivatives wrt Σk must be 0:1

∂ ln p(X|π,µ,Σ)

∂Σk

∣∣∣∣
Σ⋆

k

= 0

Σ⋆
k =

1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T

(6)

The mixture parameter πk has the additional constraint that
∑K

k=1 πk = 1, thus we introduce a
Lagrangian multiplier and maximize wrt πk and λ the quantity l:

l(πk, λ) = ln p(X|π,µ,Σ)− λ

(
1−

K∑
k=1

πk

)
This gives

0 =

N∑
n=1

N (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

+ λ

Multiplying by πk summing over k and using the constraint :

λ = −N, πk =
Nk

N
,

(7)

1Details for the derivation at https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/reading/gauss.pdf
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where Nk =
∑

n γ(znk) and N =
∑

k Nk. ■

Question 2. Using the equations derived above, find an iterative algorithm to maximize the log-
likehood of data wrt to the parameters of a Gaussian Mixture model.
Solution: The EM for Gaussian Mixtures p438 Bishop 2006:

1. Initialize the parameters

2. Evaluate the responsibilities γ(znk)

3. Re-estimate the parameters using the current responsibilities

4. Check convergence

■

Question 3. (Relation with K-means)
What theoretical assumption on the mixture model do we have to make for the algorithm we derived to
reduce to K-means ?
Solution: We assume Σk = ϵI, this leads to

γ(znk) =
πk exp(−||xn − µk||2/2ϵ)∑
j πj exp(−||xn − µj ||2/2ϵ)

. (8)

If we denote k⋆ the cluster mean that is closer to point n, then for k ̸= k⋆, γ(znk) → 0 and γ(znk⋆) → 1
when ϵ → 0, in turn leading to a hard assignment to cluster k⋆ for point n. ■

1.3 A graph for Gaussian mixture models

In a Gaussian mixture model, we assume that input data x ∈ Rd are emitted by a Gaussian distribution,
chosen at random among K ∈ N∗ possible distributions. The parameters of the distributions can be
collected in sets µ, Σ, π where, e.g. µ = {µ1, · · · ,µK} with appropriate dimensions.

The choice of the emission distribution can be modeled with a categorical unobserved (i.e. latent)
variable z ∈ {0, 1}K .

Question 1. Draw a directed graphical model representing a Gaussian mixture model.

Solution:

Figure 2: Directed graph representation of a Gaussian mixture model (Bishop Fig 9.6).

■ Consider the directed graph for a Gaussian mixture model shown in Figure 2. Suppose that you get
N data pointsX = {xn} and you want to infer the corresponding values for the latent variables Z = {zn}.

Question 2. By making use of the d-separation criterion discussed in Section 8.2 (Bishop, 2006),
write the factorization for the joint distribution p(xn, zn) (omitting the parameters for simplicity).
Solution: p(xn, zn) = p(xn|zn)p(zn) ■
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Question 3. Show that the posterior distribution of the latent variables p(Z|X) factorizes as a product
of posterior distributions for the different data points.

Solution: The directed graph indicates that there is only a link from z to x. The samples are i.i.d.,
thus we have that p(Z) =

∏N
n=1 p(zn) and p(X) =

∏N
n=1 p(xn).

Using Bayes’ Rule:

p(Z|X) =
p(X|Z)p(Z)

p(X)

=

∏N
n=1 p(xn|zn)

∏N
n=1 p(zn)∏N

n=1 p(xn)

=

N∏
n=1

p(xn|zn)p(zn)
p(xn)

=

N∏
n=1

p(zn|xn)

(9)

■

1.4 Expectation-Maximization (EM)

(Bishop Ex. 9.4) Suppose we wish to use the EM algorithm to maximize the posterior distribution over
parameters p(θ|X) for a model containing latent variables Z, where X is the observed data set. Show
that the E step remains the same as in the maximum likelihood case, whereas in the M step the quantity
to be maximized is given by

Q′(θ, θold) = Q(θ, θold) + ln p(θ) (10)

where Q(θ, θold) is defined in (11).
Recall, read the details in section 9.3 (Bishop, 2006): In the classical formulation of EM, we aim

at finding a maximum likelihood solution for the parameter θ of a statistical model, i.e. we aim at
maximizing ln p(X|θ) wrt θ.

For this we use an iterative approach (1) first we evaluate the posterior of the latent variable wrt
some estimate of the parameters θold, (2) we maximize, wrt θ, a function

Q(θ, θold) = EZ|X,θold [ln p(X,Z|θ)] . (11)

Solution: We write
ln p(θ|X) ∝ ln p(X|θ)p(θ)

= ln

[∑
Z

p(X,Z|θ)p(θ)

]
(12)

Then we follow the same development as the classical EM, but replace the term for the ”complete data
log-likelihood” p(X,Z|θ) with p(X,Z|θ)p(θ) in the expectation.

Q′(θ, θold) = EZ|X,θold [ln p(X,Z|θ)p(θ)]
= EZ|X,θold [ln p(X,Z|θ) + ln p(θ)]

= EZ|X,θold [ln p(X,Z|θ)] + EZ|X,θold [ln p(θ)]

= EZ|X,θold [ln p(X,Z|θ)] + ln p(θ)EZ|X,θold [1]

= Q(θ, θold) + ln p(θ)

(13)

■
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