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1 Approximate inference for graphical models

Suppose that x ∈ Rd is an observable random variable and that z ∈ Rn is a latent variable. We model
the relation of the these two variables with a graphical model which allow us to calculate the joint
distribution p(x, z). We call the evidence of the data, the log likelihood of the data ln p(x).

1.1 Variational inference

1.1.1 Evidence Lower Bound

Question 1 Using standard laws of propability, propose two ways to calculate the evidence and explain
why they are not feasible in practice.

Solution: We can marginalize:

p(x) =

∫
Rn

p(x, z)dz (1)

but this is not feasible in general because intractable for complex models.
We can also use Bayes rule:

p(x) =
p(x, z)

p(z|x)
(2)

But we do not have access to the posterior p(z|x) ■
Question 2 Suppose that we have access to an approximate distribution qϕ(z|x) of the true posterior

p(z|x) where ϕ is a set of parameters. Show that Eqϕ(z|x)[ln
p(x,z)
qϕ(z|x) ] is a lower bound for ln p(x).

Recall:

• The KL-divergence between two probability distribution p and q:

DKL(q||p) = Eq

[
ln

q

p

]
≥ 0 (3)

Solution:

ln p(x) = ln p(x)

∫
qϕ(z|x)dz (4)

= Eqϕ(z|x) [ln p(x)] (5)

= Eqϕ(z|x)

[
ln

p(x, z)

p(z|x)

]
(6)

= Eqϕ(z|x)

[
ln

p(x, z)qϕ(z|x)
p(z|x)qϕ(z|x)

]
(7)

= Eqϕ(z|x)

[
ln

p(x, z)

qϕ(z|x)

]
+ Eqϕ(z|x)

[
ln

qϕ(z|x)
p(z|x)

]
(8)

= Eqϕ(z|x)

[
ln

p(x, z)

qϕ(z|x)

]
+DKL(qϕ(z|x)||p(z|x)) (9)

≥ Eqϕ(z|x)

[
ln

p(x, z)

qϕ(z|x)

]
(10)

with equality between the ELBO and the evidence when DKL = 0. ■
Question 3 Let us now introduce variational auto-encoders. Let us introduce parameters for the condi-
tional distribution pθ(x|z). Show that maximizing the ELBO consists in maximizing a ”reconstruction”
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cost: Eqϕ(z|x) [ln pθ(x|z)] and minimizing a ”prior matching” term: DKL(qϕ(z|x)||p(z)).

Solution:

Eqϕ(z|x)

[
ln

pθ(x, z)

qϕ(z|x)

]
= Eqϕ(z|x)

[
ln

pθ(x|z)p(z)
qϕ(z|x)

]
(11)

= Eqϕ(z|x) [ln pθ(x|z)] + Eqϕ(z|x)

[
ln

p(z)

qϕ(z|x)

]
(12)

= Eqϕ(z|x) [ln pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (13)

■
Question 4 In the context of an auto-encoder (See figure 1), what quantity can be interpreted as the
encoder for a vector x and what quantity can be interpreted as a decoder of a vector z ?

Figure 1: Graphical model for variational autoencoders.[1]

Solution: The encoder for a vector x: qϕ(z|x). The decoder for a latent vector z: pθ(x|z) ■
Question 5 Let us consider a generalization of VAEs: Markovian Hierarchical VAEs (Markovian HVAE,
Figure 2).

Figure 2: Markovian HVAE [1]

Question 5a Factorize the joint distribution

pθ(x, z1, . . . , zT ), (14)

in terms of the quantities on the edges of the graph in figure 2?

Solution:

pθ(x, z1, . . . , zT ) = p(zT )pθ(x|z1)
T∏

t=2

pθ(zt−1|zt). (15)

■
Question 5b Similarly, factorize the posterior of the Markovian HVAE:

qϕ(z1, . . . , zT |x). (16)
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Solution:

qϕ(z1, . . . , zT |x) = qϕ(z1|x)
T∏

t=2

qϕ(zt|zt−1) (17)

■

1.1.2 Variational diffusion models (VDM)

The easiest way to think of a Variational Diffusion Model (VDM) is simply as a restricted Markovian
Hierarchical Variational Autoencoder. The architecture, depicted on figure 3, is behind stable diffusion
models.

Figure 3: A visual representation of a Variational Diffusion Model; x0 represents true data observations
such as natural images, xT represents pure Gaussian noise, and xt is an intermediate noisy version of
x0. Each q(xt|xt−1) is modeled as a Gaussian distribution that uses the output of the previous state as
its mean. [1]

2 Variational distributions

2.1 Factorized approximation

Consider a factorized variational distribution q(z) of the form:

q(z) =

M∏
i=1

qi(zi) (18)

Question 1: By using the technique of Lagrange multipliers, verify that the minimization of the
Kullback-Leibler divergence KL(p||q) with respect to one of the factors qj(zj), keeping all other fac-
tors fixed, leads to the solution:

q⋆j (zj) =

∫
p(z)

∏
i ̸=j

dzi = p(zj) (19)

Solution: We will write the KL divergence and then minimize it with respect to a factor qj(zj).
We start by writing the KL divergence:

DKL(p(z)||q(z)) = −
∫

p(z)

[
M∑
i=1

ln qi(zi)

]
dz+ cst (20)

the cst term depends only on p(z) and will be removed when deriving, next we isolate the term indexed
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with j.

DKL = −
∫

p(z)

ln qj(zj) + M∑
i ̸=j

ln qi(zi)

 dz+ cst

= −
∫

p(z) ln qj(zj)dz+ cst

= −
∫ ∫ p(z)

∏
i ̸=j

dzi

 ln qj(zj)dzj + cst

= −
∫

p(zj) ln qj(zj)dzj + cst

(21)

where the factors qi(zi) with i ̸= j are in the cst term, and we used the definition of the marginal
p(zj) =

∫
p(z)

∏
i ̸=j in the last step.

Before deriving, we need to construct an objective that enforces that the marginal factor qj(zj)
integrates to 1, we use a Lagrangian multiplier:

L(qj(zj), λ) = −
∫

p(zj) ln qj(zj)dzj + λ(

∫
qj(zj)dzj − 1) (22)

Deriving wrtqj(zj) and setting to 0 (23)

− p(zj)

q∗j (zj)
+ λ = 0 (24)

λqj(zj) = p(zj) (25)

Integrating both sides, we find λ = 1, this gives (26)

q∗j (zj) = p(zj) (27)
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