EQ2415 — Machine Learning and Data Science
HT22

Tutorial 1 A. Honoré, A. Ghosh

1 Inference in linear models

1.1 Projection on a line.

The set £ = {Bu | B € R} where u € R? is a unit vector, defines a line of points that may be obtained
by varying the value of .

Question 1. Derive an expression for the point y that lies on this line £, and that is as close as
possible (according to the Euclidean distance) to an arbitrary point x € R%. This operation of replacing
a point by its nearest member within some set is called projection.

Solution: We begin by defining the distance from y to x. We would like to find the y that minimizes
this distance:
[Ix —yl*. (1)
Next, we need to enforce the constraint that y lies on the line defined by £. We can do this simply
by defining y = au for some a € R.

[|x — aul|. (2)
Next, we expand the expression:
l(@) = [|x — aul”
= (x — au)”(x — au) 3)
=xTx — 2axTu+ o*ulu

=xTx - 2axTu+ o?

In the last line, we used the fact that u is a unit vector (i.e. uZu = 1) to make the simplification.
We can minimize this distance by taking the derivative with respect to a and setting it to zero:

di(a) _
da 0
= —2xTu+2a=0 (4)

== « :XTU..

Recalling that y = au, we can conclude that y = (x7u)u. |

Question 2. Write a small Python program that calculates the projection of random points y on
the line generated by a unit vector u. Use a space of dimension d = 2.

Solution:

x0=np.zeros(d); xl=np.random.rand(d)*0.75; x=(x1-x0).reshape(d,n);

u0=np.zeros(d); ul=np.random.rand(d)*0.75; u=(ul-u0).reshape(d,n); u=u/np.linalg.norm(u);

yhat = (x.TOu)*u;

fig, ax = plt.subplots() ax.plot(x[0,0], x[1,0],’x’,label="x",color="black") ax.plot([u0[0], ul[0]],
[u0[1], u1[1]], label="L",color="darkblue")

ax.plot([x[0,0], yhat[0,0]], [x[1,0], yhat[1,0]], label="y — x",color="darkred")

ax.plot(yhat[0,0], yhat[1,0],’.’,label="y",color="black")
ax.legend() ax.set_title("(y —x)Tu="+":.2e".format(((yhat-x).T @ u)[0,01));
w=.75; ax.setxlim([-w,w]); ax.set_ylim([-w,w]);

(y—x)'u=1.11le-16

X x
061 — ¢
y-Xx
04 o y
0.24
0.0
-0.2 4
—0.4 1
~0.6 1
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1.2 Some matrix algebra

Let m,n > 0.

Vector by scalar Suppose that a vector y € R™ is dependent upon a scalar @« € R. Then the
derivative of y with respect to « is the vector:

(ilyl
oy ¢
J === = :
= 5)
Ym
da

Scalar by vector Suppose that a scalar z € R depends upon a vector y € R™. Then the derivative
of x with respect to y is the (row) vector:

J:g—j’:[%] (6)

Vector by vector Suppose we have m real valued multivariate functions f; : R® — R. Suppose also
that we have a multivariate function f : R™ — R™ is such that for some x € R™ and y € R™,

The Jacobian matrix J, of the multivariate function f, has elements
Ofi
Jij = g;j{)7forizl,...,mandj:1,...,n, (8)
i.e. can be written in matrix form:
3}(;1(X) . 3£1 (x)
a 1 Tn
J= J(;S‘) =| : ol 9)
O fm (x) O fm (%)
Oxq o oz,

Scalar by matrix Suppose a scalar x € R is dependent upon a matrix M € R™*". Then the derivative
of wrt that matrix is written in matrix form:

ox ox
8:1’/' 61%11 e 6M17n
J=— = : : (10)
oM ox ox
OMp1 " OMpm

Suppose that for m,n > 0, we have a € R", x € R", b € R™, ¢ € R™ and M € R*"*™,

Question 1. Calculate the Jacobian:

OxTa
ox
daTx

2 ox

0aT Mb
oM
ObTMT Mc

4, —— =
oM

Al
ox

Solution:
T
ox'a o

1. =
ox a

daTx -
ox -2
daT Mb
= b T
oM a
ObTMT Mc

4 20 T 4 cbT
5 M(beT + cbT)

al[x|l5
ox

=2xT

1.3 Minimum mean square error

Suppose that we can observe two random variables x € R and y € RY. Suppose also that these variables
are related, and that we model this relation by a linear model parameterized with a matrix A € R9*¢,

i.e. such that
y = Ax.

Question 1. Find A* leading to the minimum mean square error, i.e. find A* such that

A* = arg man[Hy — Ax|%.

Solution: We will find the value of A such that the derivative of the expectation in (12) is 0.

OE[(y — Ax)T (y — Ax)] E oxT AT Ax B oxT ATy _ OyT Ax n oyTy

0A 0A 0A 0A 0A
T T AT
= E[24xx” — xy? — xy?], since 8yajx = axai Y _ xy T

= E[24xxT — yxT — yxT], since xy” is symmetric
=2E [(Ax — y)x']
Setting to 0 and rearranging (13):
OE[(y — AX)"(y — Ax)]| _
0A A
— A'E[xx’] = E[yx’]

— A* =E[yx"] (E[xx"])

-1

(11)

(12)

Question 2. Ordinary Least squares.

Suppose that you are given n data points for x and y, in the form of matrices X € R¥*" and
Y € R9%™ respectively.

Find the least square solution A} of the fitting problem when n samples are observed. Express the
solution as a function of the matrices X and Y.

Solution: Remember that
1 n
ZZHyi — Ax;||? = E[||ly — Ax|[%], when n — co. (15)
i=1

This means that the least square solution and the minimum mean square solution coincide when infinitely
many samples are observed.
The least square solution A%, minimizes the Frobenius norm of the residuals, i.e.

|y — AX|%
0A A (16)

*

=

* Frobenius norm derivative The frobenius norm for a real valued matrix is sum of the square of
the elements of the matrix, and can be written:

1V — AX[} = tr (¥ — AX)T(¥ — AX) -
=tr (XTATAX) —tr (XTATY) —tr (YTAX) +tr (YY)
Let’s calculate the derivative of the traces:

Derivative of the trace of a matrix product AXB wrt X.
Suppose A, B and X are rectangular matrices (different from the ones in the problem) with appropriate
dimensions. By definition of the trace operator and of matrix products, tr (AXB) = Zijk A Xk Bui.
The element j', k" of the Jacobian matrix of tr (AX B):

tr (AXB A X ipBri . . .
otr (AXB) = ZM, the term in the sum is 0 unless j = j' and k = &/,

6Xj’k’ an’k’
(18)
= ZAlj/Bk/7 = (ATBT)]/k/
Thus in matrix notation: e (AXB
TR = AT (19)
In our context, replacing X with A and replacing A, B
otr (YTAX)
v T _yx”T 20
o (20)
Similarly, since:
otr (AX B) _ otr (BT XTAT) _ ATRT (21)
0X 0X
replacing X with A, B with X and AT with Y
otr (XTATY
r(—) =vYXxT (22)

0A

Derivative of the trace of the matrix product X7 ATAX wrt A.

We use element notations:

(AX);; Z A Xgj and (XTAT);; Z Aji X

thus , [(XTAT)(AX));; = Z(XTAT) K(AX)g;

= Z ((Z Aleli)(Z Akamj))
k l m

=) A Xii A Xomj.
k,l,m

Now we can write the trace:

tr (XTATAX) = Z Z A1 Xii Agm Xmi = Z ZXliXmi ZAkmAkl~ (24)
i Im k

1 k,lm
Element k', 7' of the Jacobian wrt A is:
Ootr (XTATAX 8AklAkm
Y X le7
DAy ;Z ! Z DA (25)
The sum on the right hand side is for sure 0 when k # k', thus:
otr (XTATAX 8Ak’lAk/
aAk/j/i Z:ZXM mi aAk/ (26)

then we can split the sum on [, m depending on whether [or m = j’:

otr (XTATAX 8A/AH
(aAk/]") = ZZ Z X1 Xm0+ Z XX a]jéllk/k/

i 1F#j \m#j’
0Ay j» Akrm k:’ i’
+ X”isz i i
2\ oAy 2 ka’ ’ (27)
= Z Z XX Ay + Z(z Xj1iXmiAgrm + X0 X1i2A8 1)

i £ I=3" mAj’
= Z (Z X1 X Ay + ZXmin’iAk/m>
i 1 1

Here the sum on the [and m index are the same, thus:
otr (XTATAX
- QZAM ZX”X
1 i

This turns out to be the &’j’ index of matrix 2AX X7 (you can verify this by writing 24X X7 in index
form). Thus in matrix notation:

(28)

dtr (XTATAX)

=24xXx7T 29
o (29)
Back to our problem from equation 16:
Y — AX|[Z 9 T AT T AT T T
TFA*_aA r (XTATAX) —tr (XTATY) —tr (YTAX) +tr (V Y)A*:O
= 24 XXT —VXT -vyXxT =0 (30)

— 24X -Y)XT =0
— A, =YXT(xx")!

Question 3. The solution above can lead to overfitting, especially when a few data points are pro-
vided. Also X X7 may not be invertible. We resort to regularization in these cases. We find A} such
that

Al = argmin[[Y — AX|[% + [A[[, (31)

where A > 0.
How is A} calculated in this case ?

Solution: Using previous questions:
AL =YXT(XXT + A1)~ (32)
|

Question 4. Implement the solutions to Questions 2 and 3 in Python. Generate data with a lin-
ear model and make sure that you are able to recover the linear transformation.

1.4 Kernel based predictions

Similarly to the previous questions, we suppose that we are given n data points for x and y, in the form
of matrices X € R¥*™ and Y € R9*" respectively. For simplicity we assume q=1.

A kernel based predictor differs from a linear predictor in that it performs linear prediction on a trans-
formed version of the input rather than of the input directly. The transformation is performed by a

function (let’s call it ¢) mapping input vectors to vectors in a space of arbitrary dimension N, i.e.
¢ : R? — RN, The prediction for a vector x € R? is written as

y=w'¢(x), (33)

where w are parameters of the predictor. In other words, kernel predictors are linear predictors in higher
dimensional spaces.

Question 1. Introducing the design matrix.

Derive the MSE solution for w, when constant weighting factors r; > 0 are introduced for each of
our samples x;, i.e. find w* that minimizes:

E(w) = % ZH (i — WT¢(Xi))2 (34)

Question la. Write the derivative of E wrt w
Question 1b. Find w* that minimizes F as a function of

Vio(xi1)” VT

P = : and Y/ = : (35)
V rnd)(xn)T VTnYn
Question 1c. How can you interpret the coefficients r; 7
Solution: The derivative:
1 n
T == iy — wh(xi)) (i) (36)

i=1

Let us denote y; = \/ry; and ¢(x;) = \/rip(x;). Setting the derivative to 0:

0= Zy;d)l(x (Z d) Xz z) (37)
i=1

Note that ®7®’ = S é(xi) ¢ (x;)T and Ty’ = S, yi@'(x;) This gives, using the design matrix
& wr=YTP (®Td)!

In imbalanced classification problems, the coefficient r; can be interpreted as class weights, artificially
increasing/decreasing the error made on the under/over-represented class. |

Question 2. Introducing the Gram matrix.

We now assume that r; = 1 for ¢ = 1,...,n. Also, we assume that we introduce a regularization
parameter A > 0 in our MSE.

Question 2a. Write the MSE (similar to equation 34) with a regularization term for ||w||2 and without
Ti.

Solution:
n

Z (yz — WTqb(xi))2 + gWTW (38)

=1

1

T2

E(w)
n

The design matrix ® can be problematic to compute for some choices of ¢. Instead let us introduce a
way to perform predictions on a new point x, without explicitely writting the design matrix. For this
we need another parameter vector :

1
a € R", where a; = —X(WT(;S(X”) —yn), fori=1,...,n (39)

Using this in the expression of the gradient of equation (34), we find that this new parameter vector is
related to w as follows: w = ®”a.

Question 2b. By introducing the Gram matrix K = ®®7 | with elements Ki; = ¢(xi)T ¢(x;) show
that the prediction for a vector x € R? can be obtained as (Eq (6.9) in Bishop):

k(x1,x)
=Y (K +AL,)"" : (40)
k(xp,X)
you can assume g = 1 for simplicity.
Solution: We re-write equation 34:
1 A
E(w) = 5 ;(WTfﬁ(Xi) — i)’ + §WTW
1 n
= §Z(WT¢<XZ ZW ¢ Xz Yi + Zyz + W w
i=1
1 n
= 5 Z(WT¢(X1))(¢(z ZWT¢ Xz Yi + Zyz + W w
i=1 i=1 (41)

1 n n)\
- (3 ¢<xi>¢<xi>T> IR R
=1 =1
_ s id)(x')qb(x')T ®Ta—aTed™YT 1 LyTy £ 2aTea s
2 - VR 2 2

1 1
= 5aLT¢><I>T<I><§Ta —aTedTyT + 5YTY + %aT@I»Ta

The Gram matrix is introduced as K = ®®* which leads to

1 1 A
E(a) = 5aTKKa —aTKy7T + §YTY + +§aTKa (42)
Deriving wrt a and setting the gradient to 0:

a* = (K + AL, 'Y. (43)

This leads to the equation for the prediction of a target from a new input x:

o' (x1)
y=wlp(x) =al ®p(x) = YT (K +A,) " Coe(x)
¢)T(Xn) (44)
k(x1,x)
y=Y"(K+\,)™" ;
k(xp,X)
|

Question 3. Implement a function in Python that calculates the Gram matrix associated with a linear
kernel. Your function should take as argument two sets of vectors in R? in the form of two matrices, e.g.
X; € R and X, € R¥™™ and return the Gram matrix K € R?*™.

Question 4. Similarly, implement a function in Python that calculates the Gram matrix associated
with a RBF kernel.

Question 5. Implement (40). Your function should take a matrix with input points columnwise and
return a matrix with the predicted vectors columnwise.

Question 6. Compare the performances of a kernel predictor with a linear kernel and with a RBF
kernel. You can use a toy dataset for this, e.g.:

from sklearn.datasets import make_circles;
X,Y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0);

