

Pattern Recognition and Machine Learning

EQ2341 VT25

Antoine Honoré (honore@kth.se)

Lecture	Торіс	Time	Slide
1	HMM + EM	1h30	3
2	$EM\ (continued) + Baum-Welch$	1h	33
3	Lagrange multipliers + Baum-Welch (Q&A)	1h	55
4	Bayesian Learning + Variational inference	1h30	64
5	Viterbi + EM (Q&A)	1h	87
6	Transformers	1h30	95
7	VAEs	1h30	107
8	Overall recap	1h30	121
		10h30	

Lecture 1 HMMs

What is a hidden Markov model ?

A parametric statistical model

- ► For doing what?
 - Modeling an observed data sequence with the assumption that it is related to another unobserved (latent) data sequence.
- With parameter set λ, <u>x</u> = [x₁,..., x_T] the observed data, <u>s</u> = [s₁,..., s_T] the un-observed data, the joint model is written:

$$\rho(\underline{\mathbf{x}},\underline{\mathbf{s}}|\lambda) \tag{1}$$

► The model does not tell us how to write the likelihood p(x|λ) of a data sequence x, we have to use the joint distribution:

$$p(\underline{\mathbf{x}}|\lambda) = \int p(\underline{\mathbf{x}}, \underline{\mathbf{s}}|\lambda) d\underline{\mathbf{s}}$$
(2)

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

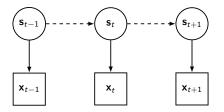
What is a hidden Markov model ?

A parametric statistical model

A HMM makes the following assumption about the relation between the data and the latent:

- 1. the observed sample at time t depends *only* on the latent variable at time t.
- 2. the latent variable at time t depends only on the latent variable at time t 1.

Questions: How do you draw this ? Write the distribution $p(\mathbf{x}, \mathbf{s})$ according to your drawing



$$p(\underline{\mathbf{x}},\underline{\mathbf{s}}) = p(\mathbf{s}_1)p(\mathbf{x}_1|\mathbf{s}_1)\prod_{t=2}^T p(\mathbf{x}_t|\mathbf{s}_t)p(\mathbf{s}_t|\mathbf{s}_{t-1})$$

A parametric statistical model

$$p(\underline{\mathbf{x}},\underline{\mathbf{s}}|\lambda) = p(\mathbf{s}_1|\lambda)p(\mathbf{x}_1|\mathbf{s}_1,\lambda)\prod_{t=2}^{T}p(\mathbf{x}_t|\mathbf{s}_t,\lambda)p(\mathbf{s}_t|\mathbf{s}_{t-1},\lambda)$$
(3)

- The parameters of the HMM describe how the latent variable is related to the observed data. We choose the parameter space, and learn the best values in that space.
- ▶ Here, we treat only HMM with a finite latent space, i.e. the variables S_t can take $N \in \mathbb{N}^*$ values
 - for t = 1 we write: $\mathbf{q} = [p(\mathbf{S}_1 = i)]_{i \in [N]}$
 - for t > 1 the kernel $p(\mathbf{S}_t | \mathbf{S}_{t-1})$ can be written as a matrix: $A = [p(\mathbf{S}_t = j | \mathbf{S}_{t-1} = i)]_{i,j \in [N]}$
 - $\forall t \text{ we write } B \text{ the parameters of } p(\mathbf{x}_t | \mathbf{s}_t)$
- HMMs defined over sequences of finite length (what we have in practice) are called finite duration. I won't spend time explaining the details of this, refer to 5.3 in the book.

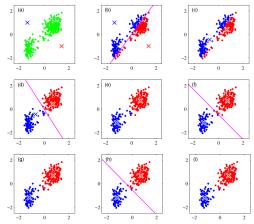
A parametric statistical model

$$p(\mathbf{\underline{x}}, \mathbf{\underline{s}}|\lambda) = p(\mathbf{s}_1|\lambda)p(\mathbf{x}_1|\mathbf{s}_1, \lambda)\prod_{t=2}^T p(\mathbf{x}_t|\mathbf{s}_t, \lambda)p(\mathbf{s}_t|\mathbf{s}_{t-1}, \lambda)$$

Question: How do you write $p(S_2)$? What about, $\forall t \in [T]$, $\mathbf{p}_t = p(S_t)$?

▶
$$\forall j \in [N]$$
 $p(\mathbf{S}_2 = j) = \sum_{i=1}^{N} p(\mathbf{S}_2 = j | \mathbf{S}_1 = i) p(\mathbf{S}_1 = i)$, so $p(\mathbf{S}_2) = A^T \mathbf{q}$
▶ $\forall t \in [T]$ $\mathbf{p}_t = A^T \mathbf{p}_{t-1}$

Let's forget about time series for a minute, assume data in 2d.

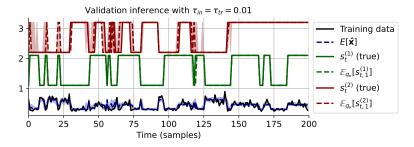


Bishop 2006 Figure 9.1

- Do you recognize this algorithm ?
 - it's K-means, a clustering method
- Is this a probabilistic method ?
 - No it's a hard cluster assignment method, BUT there exists an equivalent probabilistic K-means
- Are there latent variables ?
 - yes, the cluster means !
- What are the parameters ?
 - The cluster means too

Why choose a latent variable model ?

Latent variable models are useful when there is a reason to assume an underlying structure in the data (In our case a discrete structure)



Likelihood maximization ?

once the structure is specified (the parameter space is chosen), we need to learn the parameters that maximize the likelihood of the data under that model:

$$\lambda^* = \arg\max_{\lambda} p(\underline{\mathbf{x}}|\lambda) = \arg\max_{\lambda} \ln p(\underline{\mathbf{x}}|\lambda)$$
(4)

- In other words, find the model with the set of parameters that is the most likely to have generated the data.
- Solving λ^* directly is *intractable*,
 - We would have to integrate/sum over the N^T possible combinations of state sequences:
- \blacktriangleright Therefore we resort to an iterative scheme to find a locally optimal λ

EM: Learning Latent variable models

Intractable you say ? Let's look at a GMM example

• Given a training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$, and a GMM $\mathbf{x}^{(i)} \sim p(\mathbf{x}|\lambda)$, $\lambda = \{(\mu_j, \sigma_j^2, w_j)\}_{j=1}^K$

The log-likelihood is (assuming iid)

/ETENSKAP

$$L(\lambda) = \sum_{i=1}^{N} \ln p(\mathbf{x}^{(i)}|\lambda) = \sum_{i=1}^{N} \ln \left[\sum_{j=1}^{K} p(\mathbf{x}^{(i)}, \mathbf{S}^{(i)} = j|\lambda)\right]$$
$$= \sum_{i=1}^{N} \ln \left[\sum_{j=1}^{K} p(\mathbf{S}^{(i)} = j) \cdot p(\mathbf{x}^{(i)}|\mathbf{S}^{(i)} = j)\right]$$
$$= \sum_{i=1}^{N} \ln \left[\sum_{j=1}^{K} w_j \cdot \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{(\mathbf{x}^{(i)} - \mu_j)^2}{2\sigma_j^2}\right)\right]$$

• Solve for λ by setting partial derivatives to 0? No closed-form solution.

EM: Learning Latent variable models

Intractable you say ? Let's look at a Gaussian Mixture model example

- ▶ Good news: The optimization is easy if we assume that we know the variable S⁽ⁱ⁾, ⇒ it becomes a matter of estimating the parameter of single Gaussians.
- Thus we resort to an iterative scheme:
 - 1. first find the expected latent variables
 - 2. then maximize the expected likelihood wrt the parameters
- ► EM: Expectation + Maximization
 - 1. Assume some parameter λ' , get the distribution of the latent variable assuming these parameters: $p(\mathbf{S}|\mathbf{X}, \lambda')$.
 - 2. Maximize $Q(\lambda, \lambda') = E_{p(\mathbf{S}|\mathbf{X}, \lambda')}[\ln p(\mathbf{X}, \mathbf{S}|\lambda)]$ wrt λ .
- Price to pay :
 - In general this iterative scheme does not converge to a global optima, but only to a local optima

Let's spend some time on the Q function

- In EM what we are really doing is optimizing the Q function, instead of optimizing the log-likelihood directly.
- how do we ensure

$$Q(\lambda, \lambda') > Q(\lambda', \lambda') \implies \ln p(\underline{\mathbf{x}}|\lambda) > \ln p(\underline{\mathbf{x}}|\lambda')$$
(5)

Showing

$$\ln p(\underline{\mathbf{x}}|\lambda) - \ln p(\underline{\mathbf{x}}|\lambda') \ge Q(\lambda,\lambda') - Q(\lambda',\lambda')$$
(6)

is sufficient, why ?

► because then
$$Q(\lambda, \lambda') - Q(\lambda', \lambda') > 0 \implies \ln p(\mathbf{x}|\lambda) - \ln p(\mathbf{x}|\lambda') > 0$$

Let's spend some time on the ${\sf Q}$ function

$$\ln p[\underline{\mathbf{x}} \mid \lambda] - \ln p[\underline{\mathbf{x}} \mid \lambda'] = \ln \frac{p[\underline{\mathbf{x}} \mid \lambda]}{p[\underline{\mathbf{x}} \mid \lambda']} = \ln \sum_{\substack{(i_1 \dots i_T) \\ (i_1 \dots i_T) \end{pmatrix}} \frac{p[\underline{\mathbf{S}} = (i_1 \dots i_T) \mid \underline{\mathbf{x}}, \lambda']}{p[\underline{\mathbf{S}} = (i_1 \dots i_T) \mid \underline{\mathbf{x}}, \lambda']} \cdot \frac{p[\underline{\mathbf{S}} = (i_1 \dots i_T), \underline{\mathbf{x}} \mid \lambda]}{p[\underline{\mathbf{x}} \mid \lambda']}$$
$$= \ln \sum_{\substack{(i_1 \dots i_T) \\ (i_1 \dots i_T) \end{pmatrix}} p[\underline{\mathbf{S}} = (i_1 \dots i_T) \mid \underline{\mathbf{x}}, \lambda'] \frac{p[\underline{\mathbf{S}} = (i_1 \dots i_T), \underline{\mathbf{x}} \mid \lambda]}{p[\underline{\mathbf{S}} = (i_1 \dots i_T), \underline{\mathbf{x}} \mid \lambda]}$$
$$= \ln E \left[\frac{p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda]}{p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda']} \right]$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

Let's spend some time on the Q function

$$\ln p[\underline{\mathbf{x}} \mid \lambda] - \ln p[\underline{\mathbf{x}} \mid \lambda'] = \dots = \ln E \left[\frac{p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda]}{p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda']} \middle| \underline{\mathbf{x}}, \lambda' \right]$$

(Jensen inequality)
$$\geq E \left[\ln \frac{p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda]}{p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda']} \middle| \underline{\mathbf{x}}, \lambda' \right]$$
$$= E \left[\ln p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda] \mid \underline{\mathbf{x}}, \lambda' \right] - E \left[\ln p[\underline{\mathbf{S}}, \underline{\mathbf{x}} \mid \lambda'] \mid \underline{\mathbf{x}}, \lambda' \right]$$
$$= Q(\lambda, \lambda') - Q(\lambda', \lambda')$$

Recall Jensen inequality in probability theory

 $\varphi(E[X]) \leq E[\varphi(X)]$ for a convex function φ

Summary

- ► A HMM is a timeseries parametric statistical model with latent variables
- Assumptions are made on the latent variable model & the relationship between the observed and the latent variable
- Learning the parameters from data is not tractable the usual way, i.e. finding global optimum with derivatives, is not feasible
- We prove another scheme to learn parameters

Example with timeseries

You observe data $\underline{\mathbf{x}} = [\mathbf{x}_1, \dots, \mathbf{x}_T]$, and you know this model:

$$\begin{aligned} \mathbf{x}_0 &= \mathbf{0} \\ \mathbf{x}_t &= \mathbf{S}_t \lambda \mathbf{x}_{t-1} + W_t, \quad \forall t = 1, \dots, T, \end{aligned}$$

where $\lambda \in \mathbb{R}$, $\forall t \in [T]$, $\mathbf{S}_t \sim \mathcal{U}(\{-1, +1\})$, $W_t \sim \mathcal{N}(0, \sigma^2)$ is white noise. Questions:

- 1. Draw the relationships between the random variables.
- 2. Write $p(\underline{\mathbf{X}}, \underline{\mathbf{S}}|\lambda)$.
- 3. Write $p(\underline{S}|\underline{X}, \lambda)$ for the *expectation* step
- 4. Write $Q(\lambda, \lambda') = E_{p(\underline{S}|\underline{X}, \lambda')}[\ln p(\underline{S}, \underline{X}|\lambda)]$ so that you can perform the maximization step.

Joint distribution

$$p(\underline{\mathbf{S}} = (i_1 \dots i_T), \underline{\mathbf{x}} \mid \lambda) = \prod_{t=1}^T p(\mathbf{S}_t = i_t, \mathbf{x}_t \mid \mathbf{x}_{t-1}, \lambda)$$

where $\forall t \in [T]$

$$p(\mathbf{S}_{t} = i_{t}, \mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \lambda) = p(\mathbf{S}_{t} = i_{t}) p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{S}_{t} = i_{t}, \lambda)$$

$$p(\mathbf{S}_{t} = +1, \mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \lambda) = \frac{1}{2} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\mathbf{x}_{t} - (+1)\lambda\mathbf{x}_{t-1})^{2}}{2\sigma^{2}}}$$

$$p(\mathbf{S}_{t} = -1, \mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \lambda) = \frac{1}{2} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\mathbf{x}_{t} - (-1)\lambda\mathbf{x}_{t-1})^{2}}{2\sigma^{2}}}$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

Posterior distribution

$$\gamma_{+,t} = p \left[\mathbf{S}_{t} = +1 \mid \mathbf{x}_{t}, \mathbf{x}_{t-1}, \lambda \right] = \frac{p(\mathbf{x}_{t} \mid \mathbf{S}_{t} = +1, \mathbf{x}_{t-1}, \lambda) p(\mathbf{S}_{t} = +1 \mid \mathbf{x}_{t-1}, \lambda)}{p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \lambda)}$$

$$= \frac{e^{-\frac{(\mathbf{x}_{t} - \lambda \mathbf{x}_{t-1})^{2}}{2\sigma^{2}}}}{e^{-\frac{(\mathbf{x}_{t} - \lambda \mathbf{x}_{t-1})^{2}}{2\sigma^{2}}} + e^{-\frac{(\mathbf{x}_{t} + \lambda \mathbf{x}_{t-1})^{2}}{2\sigma^{2}}}$$

$$= \frac{e^{\frac{\lambda \mathbf{x}_{t} \mathbf{x}_{t-1}}{\sigma^{2}}}}{e^{\frac{\lambda \mathbf{x}_{t} \mathbf{x}_{t-1}}{\sigma^{2}}}}$$

$$\gamma_{-,t} = 1 - \gamma_{+,t}$$

$$= \frac{e^{-\frac{\lambda \mathbf{x}_{t} \mathbf{x}_{t-1}}{\sigma^{2}}}}{e^{\frac{\lambda \mathbf{x}_{t} \mathbf{x}_{t-1}}{\sigma^{2}}}}$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

Q function

$$Q(\lambda, \lambda') = \sum_{i_1} \cdots \sum_{i_T} P\left[\mathbf{\underline{S}} = (i_1 \dots i_T) \mid \mathbf{x}, \lambda'\right] \ln p\left[\mathbf{\underline{S}} = (i_1 \dots i_T), \mathbf{x} \mid \lambda\right]$$
$$= \sum_{i_1} \cdots \sum_{i_T} P\left[\mathbf{\underline{S}} = (i_1 \dots i_T) \mid \mathbf{x}, \lambda'\right] \sum_{t=1}^T \ln P\left[\mathbf{S}_t = i_t, \mathbf{x}_t \mid \mathbf{x}_{t-1}, \lambda\right]$$
$$= \sum_{t=1}^T \sum_{i_t} P\left[\mathbf{S}_t = i_t \mid \mathbf{x}_t, \mathbf{x}_{t-1}, \lambda'\right] \ln P\left[\mathbf{S}_t = i_t, \mathbf{x}_t \mid \mathbf{x}_{t-1}, \lambda\right]$$
$$= \sum_{t=1}^T \left[\gamma_{+,t} \frac{-(\mathbf{x}_t - \lambda \mathbf{x}_{t-1})^2}{2\sigma^2} + \gamma_{-,t} \frac{-(\mathbf{x}_t + \lambda \mathbf{x}_{t-1})^2}{2\sigma^2} + Cst\right],$$

where Cst does not depend on λ and so will not intervene in the maximization.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

Q function maximization

$$0 = \frac{\partial Q(\lambda, \lambda')}{\partial \lambda} \Big|_{\lambda^*} = \sum_{t=1}^T \gamma_{+,t} \frac{(\mathbf{x}_t - \lambda^* \mathbf{x}_{t-1}) \mathbf{x}_{t-1}}{\sigma^2} - \gamma_{-,t} \frac{(\mathbf{x}_t + \lambda^* \mathbf{x}_{t-1}) \mathbf{x}_{t-1}}{\sigma^2}$$
$$= \sum_{t=1}^T (\gamma_{+,t} - \gamma_{-,t}) \frac{\mathbf{x}_t \mathbf{x}_{t-1}}{\sigma^2} - \underbrace{(\gamma_{+,t} + \gamma_{-,t})}_1 \frac{\lambda^* \mathbf{x}_{t-1}^2}{\sigma^2}$$
$$= \sum_{t=2}^T (\gamma_{+,t} - \gamma_{-,t}) \frac{\mathbf{x}_t \mathbf{x}_{t-1}}{\sigma^2} - \frac{\lambda^* \mathbf{x}_{t-1}^2}{\sigma^2}$$

Note that $\gamma_{+,t} - \gamma_{-,t} = \tanh\left(\frac{\lambda' \mathbf{x}_t \mathbf{x}_{t-1}}{\sigma^2}\right)$

$$\lambda^* = \frac{\sum_{t=2}^{T} \tanh(\frac{\lambda' \mathbf{x}_t \mathbf{x}_{t-1}}{\sigma^2}) \mathbf{x}_t \mathbf{x}_{t-1}}{\operatorname{Actors} \operatorname{Max}(t - 2 \mathbf{X}_{t-1}^2)}$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honor t=2 \mathbf{x}_{t-1}^{-1}

K-means

- Suppose $N \in \mathbb{N}_*$ data points $\mathbf{x}_n \in \mathbb{R}^d$ for $n = 1, \cdots, N$.
- Suppose we can measure distances in ℝ^d with a bivariate function d, e.g. d(x_n, x_{n'}) = ||x_n - x_{n'}||₂.
- We want to assign all our data points to one of K ∈ N_{*} clusters, characterized by their means µ_k ∈ ℝ^d for k = 1, · · · , K.
- We use the notation $r_{nk} \in \{0, 1\}$, where $r_{nk} = 1$ and $r_{nk'} = 0$ for $k' \neq k$ if point *n* is assigned to the *k*-th cluster.
- The goal of *K*-means clustering is to
 - 1. learn the means of the each cluster and
 - 2. assign every point in the data set to one of the clusters.

Optimization problem

The goal is to find $\{r_{nk}\}$ and $\{\mu_k\}$ which minimize

$$J(\{r_{nk}\},\{\mu_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||_2^2,$$
(7)

Example with K-means & GMMs: Cluster assignment

At iteration *i*, what are the optimal values for $r_{nk}^{(i)}$ according to the current estimate μ_k ?

$$r_{nk}^{(i)} = \begin{cases} 1 & \text{if } k = \arg\min_j ||\mathbf{x}_n - \boldsymbol{\mu}_j^{(i-1)}||_2^2 \\ 0 & \text{otherwise.} \end{cases}$$
(8)

Optimization problem

How can you optimize $\mu_k^{(i)}$ based on the new estimates for $r_{nk}^{(i)}$? Derive and set to 0:

$$\frac{\partial J(r_{nk}^{(i)}, \boldsymbol{\mu}_k)}{\partial \boldsymbol{\mu}_k} \bigg|_{\boldsymbol{\mu}_k^{(i)}} = 0$$

$$\implies 2 \sum_{n=1}^N r_{nk}^{(i)} (\mathbf{x}_n - \boldsymbol{\mu}_k^{(i)}) = 0$$

$$\boldsymbol{\mu}_k^{(i)} = \frac{\sum_n r_{nk}^{(i)} \mathbf{x}_n}{\sum_n r_{nk}^{(i)}}$$
(9)

Probabilistic K-means

Again, denote $\mathbf{X} = {\mathbf{x}_n}_{n=1}^N$ the set of observed training data.

- Probabilistic interpretation of K-means: defining the clusters in terms of distributions rather than simply by there means.
- We will aim at maximizing the likelihood of the dataset X wrt to a mixture of Gaussian model:

$$\ln p(\mathbf{X}|\lambda) = \sum_{n=1}^{N} \ln \left[\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right],$$
(10)

where $\lambda = \pi, \mu, \Sigma$

• And assuming initial values for λ .

Example with K-means & GMMs

Derivatives wrt μ_k must be 0:

$$\begin{split} \frac{\partial \ln p(\mathbf{X}|\pi, \boldsymbol{\mu}, \mathbf{\Sigma})}{\partial \boldsymbol{\mu}_{k}} \bigg|_{\boldsymbol{\mu}_{k}^{\star}} &= 0\\ \Longrightarrow 0 &= \sum_{n=1}^{N} \frac{\frac{\partial \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k})}{\partial \boldsymbol{\mu}_{k}}}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \mathbf{\Sigma}_{j})}, \text{ where we derived ln(.) wrt } \boldsymbol{\mu}_{k} \end{split}$$

Next, we derive the numerator (using equation (86)) from the Matrix Cookbook) $\frac{\partial \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\partial \boldsymbol{\mu}_k} = \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \boldsymbol{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu}_k),$

Denoting
$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \in \mathbb{R}$$
, we get: $0 = \sum_{n=1}^N \gamma(z_{nk}) \boldsymbol{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu}_k^*)$

Finally :

$$\mu_k^* = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n, \text{ with } N_k = \sum_{n=1}^N \gamma(z_{nk})$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honore

Derivatives wrt Σ_k must be 0:

$$\frac{\partial \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\Sigma}_{k}} \bigg|_{\boldsymbol{\Sigma}_{k}^{\star}} = 0 \implies$$
$$\boldsymbol{\Sigma}_{k}^{\star} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T}$$

Details for the derivation at

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/reading/gauss.pdf

The mixture parameter π_k has the additional constraint that $\sum_{k=1}^{K} \pi_k = 1$, thus we introduce a Lagrangian multiplier and maximize wrt π_k and β , the quantity:

$$I(\pi_k, eta) = \ln p(\mathbf{X} | \boldsymbol{\pi}, \boldsymbol{\mu}, \mathbf{\Sigma}) - eta \left(1 - \sum_{k=1}^K \pi_k
ight)$$

Deriving wrt π_k and setting to 0 gives

$$0 = \sum_{n=1}^{N} \frac{\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} + \beta$$

Multiplying by π_k summing over k and using the constraint :

$$\beta = -N, \pi_k = \frac{N_k}{N},$$

where $N_k = \sum_n \gamma(z_{nk})$ and $N = \sum_k N_k$.

The EM for Gaussian Mixtures p438 Bishop 2006:

- 1. Initialize the parameters
- 2. Evaluate the responsibilities $\gamma(z_{nk})$
- 3. Re-estimate the parameters using the current responsibilities
- 4. Check convergence

Reducing GMM to K-means

- ▶ How should you define the GMM so that clustering reduces to K-means ?
- Assume $\Sigma_k = \epsilon \mathbf{I}$, this leads to

$$\gamma(z_{nk}) = \frac{\pi_k \exp(-||\mathbf{x}_n - \boldsymbol{\mu}_k||_2^2/2\epsilon)}{\sum_j \pi_j \exp(-||\mathbf{x}_n - \boldsymbol{\mu}_j||_2^2/2\epsilon)}.$$

- If we denote k^* the cluster mean that is closer to point n,
- ▶ then for $k \neq k^{\star}, \gamma(z_{nk}) \rightarrow 0$ and $\gamma(z_{nk^{\star}}) \rightarrow 1$ when $\epsilon \rightarrow 0$,
- in turn leading to a hard assignment to cluster k^* for point *n*.

Summary

- ► The procedure of EM is:
 - 1. Select initial parameters λ'
 - 2. Write $Q(\lambda, \lambda') = E_{p(\underline{\mathbf{S}}|\underline{\mathbf{X}}, \lambda')}[\ln p(\underline{\mathbf{S}}, \underline{\mathbf{X}}|\lambda)].$
 - 3. Maximize Q wrt λ .
- ▶ We saw EM in practice for a timeseries model.
- ▶ We revisited K-means as a particular case of clustering with GMMs.

Lecture 2 Baum-Welch

Back to HMMs with N states

$$p(\mathbf{\underline{x}}, \mathbf{\underline{s}}|\lambda) = p(\mathbf{s}_1|\lambda)p(\mathbf{x}_1|\mathbf{s}_1, \lambda)\prod_{t=2}^T p(\mathbf{x}_t|\mathbf{s}_t, \lambda)p(\mathbf{s}_t|\mathbf{s}_{t-1}, \lambda),$$

with $\lambda = \{q, A, B\}$.

The Q function

$$Q(\lambda,\lambda') = \sum_{i_1}^N \cdots \sum_{i_T}^N p(\underline{\mathbf{s}} = (i_1, \dots, i_T) | \underline{\mathbf{x}}, \lambda') \ln p(\underline{\mathbf{x}}, \underline{\mathbf{s}} = (i_1, \dots, i_T), \lambda)$$

The Q function

$$Q(\lambda,\lambda') = \sum_{i_1}^N \cdots \sum_{i_T}^N p(\underline{\mathbf{s}} = (i_1, \dots, i_T) | \underline{\mathbf{x}}, \lambda') [\ln p(\mathbf{s}_1 | \lambda) + \sum_{t=2}^T \ln p(\mathbf{s}_t | \mathbf{s}_{t-1}, \lambda) + \sum_{t=1}^T \ln p(\mathbf{x}_t | \mathbf{s}_t, \lambda)]$$

We look at the different parameters independently:

$$Q_{1}(\lambda,\lambda') = \sum_{i_{1}}^{N} \cdots \sum_{i_{T}}^{N} p(\underline{\mathbf{s}} = (i_{1},\ldots,i_{T})|\underline{\mathbf{x}},\lambda') \ln p(\mathbf{s}_{1}|\lambda)$$

$$Q_{2}(\lambda,\lambda') = \sum_{i_{1}}^{N} \cdots \sum_{i_{T}}^{N} p(\underline{\mathbf{s}} = (i_{1},\ldots,i_{T})|\underline{\mathbf{x}},\lambda') \left[\sum_{t=2}^{T} p(\mathbf{s}_{t}|\mathbf{s}_{t-1},\lambda)\right]$$

$$Q_{3}(\lambda,\lambda') = \sum_{i_{1}}^{N} \cdots \sum_{i_{T}}^{N} p(\underline{\mathbf{s}} = (i_{1},\ldots,i_{T})|\underline{\mathbf{x}},\lambda') \left[\sum_{t=1}^{T} \ln p(\mathbf{x}_{t}|\mathbf{s}_{t},\lambda)\right]$$
where and Machine Lemma 4. As there is the matrix

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

Trick

An important trick in the calculation is to marginalize the posterior with everything expect the time index in the term from the joint distribution. E.g. Q_1 :

$$p(\underline{\mathbf{s}} = (i_1, \ldots, i_T) | \underline{\mathbf{x}}, \lambda') = p(\mathbf{s}_1 = i_1 | \underline{\mathbf{x}}, \lambda') p(\mathbf{s}_2, \ldots, \mathbf{s}_T = (i_2, \ldots, i_T) | \underline{\mathbf{x}}, \mathbf{s}_1 = i_1, \lambda')$$

$$Q_{1}(\lambda,\lambda') = \sum_{i_{1}=1}^{N} \cdots \sum_{i_{T}=1}^{N} p(\underline{\mathbf{s}} = (i_{1},\ldots,i_{T})|\underline{\mathbf{x}},\lambda') \ln p(\mathbf{s}_{1}|\lambda)$$

$$Q_{1}(\lambda,\lambda') = \sum_{i_{1}=1}^{N} p(\mathbf{s}_{1} = i_{1}|\underline{\mathbf{x}},\lambda') \ln p(\mathbf{s}_{1}|\lambda) \cdot \underbrace{\sum_{i_{2}=1}^{N} \cdots, \sum_{i_{T}=1}^{N} p(\mathbf{s}_{2},\ldots,\mathbf{s}_{T} = (i_{2},\ldots,i_{T})|\underline{\mathbf{x}},\mathbf{s}_{1} = i_{1},\lambda')}_{=1}$$

Similarly in Q_2

$$Q_{2}(\lambda,\lambda') = \sum_{i_{1}=1}^{N} \cdots \sum_{i_{T}=1}^{N} p(\underline{\mathbf{s}} = (i_{1}, \dots, i_{T}) | \underline{\mathbf{x}}, \lambda') \left[\sum_{t=2}^{T} \ln p(\mathbf{s}_{t} | \mathbf{s}_{t-1}, \lambda) \right]$$
$$= \sum_{t=2}^{T} \sum_{i_{t-1}}^{N} \sum_{i_{t}}^{N} p(\mathbf{s}_{t-1} = i_{t-1}, \mathbf{s}_{t} = i_{t} | \underline{\mathbf{x}}, \lambda') \ln p(\mathbf{s}_{t} | \mathbf{s}_{t-1}, \lambda)$$
$$\cdot \underbrace{\left[\sum_{i_{k \neq t-1,t}}^{N} p(\cap_{k \neq t-1,t} (\mathbf{s}_{k} = i_{k}) | \underline{\mathbf{x}}, \lambda') \right]}_{=1}$$

Similarly in Q_3 :

$$Q_{3}(\lambda,\lambda') = \sum_{i_{1}=1}^{N} \cdots \sum_{i_{T}=1}^{N} p(\underline{\mathbf{s}} = (i_{1},\ldots,i_{T})|\underline{\mathbf{x}},\lambda') \left[\sum_{t=1}^{T} \ln p(\mathbf{x}_{t}|\mathbf{s}_{t},\lambda)\right]$$
$$= \sum_{t=1}^{T} \sum_{i_{t}=1}^{N} p(\mathbf{s}_{t} = i_{t}|\underline{\mathbf{x}},\lambda') \ln p(\mathbf{x}_{t}|\mathbf{s}_{t},\lambda) \cdot \underbrace{\left[\sum_{(i_{k\neq t})_{k}} p(\cap_{k\neq t}(\mathbf{s}_{k} = i_{k})|\underline{\mathbf{x}},\lambda')\right]}_{=1}$$

Finally, if $\forall i, t \in [N] \times [T] \quad \gamma_{i,t} = p(\mathbf{s}_t = i | \underline{\mathbf{x}}, \lambda')$, and $\forall (i,j) \in [N]^2 \quad \xi_{i,j,t} = p(\mathbf{s}_{t-1} = i, \mathbf{s}_t = j | \lambda')$

$$Q_{1}(\lambda, \lambda') = \sum_{i=1}^{N} \gamma_{i,1} \ln p(\mathbf{s}_{1} = i | \lambda)$$

$$Q_{2}(\lambda, \lambda') = \sum_{t=2}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j,t} \ln p(\mathbf{s}_{t} = j | \mathbf{s}_{t-1} = i, \lambda)$$

$$Q_{3}(\lambda, \lambda') = \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{i,t} \ln p(\mathbf{x}_{t} | \mathbf{s}_{t} = i, \lambda)$$

$$\forall i, j, t \in [N] \times [N] \times [T], \text{ how to calculate } \gamma_{i,t} = p(\mathbf{s}_t = i | \underline{\mathbf{x}}, \lambda'), \text{ and} \\ \xi_{i,j,t} = p(\mathbf{s}_{t-1} = i, \mathbf{s}_t = j | \underline{\mathbf{x}}, \lambda') ?$$

$$\blacktriangleright \text{ See chap 5 } !$$

$$Q_1(\mathbf{q},\lambda') = \sum_{i=1}^N \gamma_{i,1} \ln q_i$$

Similar to updating the mixture weights in a GMM !

$$\forall i \in [N] \quad q_i^{\star} = rac{\gamma_{i,1}}{\sum_{j=1}^N \gamma_{j,1}}$$

$$Q_2(A, \lambda') = \sum_{t=2}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j,t} \ln a_{i,j}$$

There are N additional constraints

$$\forall i \in [N] \quad \sum_{j=1}^{N} a_{i,j} = 1$$

We define Lagrange multipliers: $\forall i \in [N] \quad \nu_i$, the criteria becomes:

$$\forall i,j \in [N]^2$$
 $I(\nu_i, a_{i,j}, \lambda') = Q_2(A, \lambda') + \nu_i(1 - \sum_{k=1}^N a_{i,k})$

Optimizing Q_2 Solving for $a_{i,j}$.

$$\begin{split} \frac{\partial l(\nu_i, a_{i,j}, \lambda')}{\partial a_{i,j}} \bigg|_{a_{i,j}^*} &= 0 \implies \\ \sum_{t=2}^N \frac{\xi_{i,j,t}}{a_{i,j}} - \nu_i &= 0 \\ \text{With the constraint: } \nu_i &= \sum_{k=1}^N \sum_{t=2}^T \xi_{i,k,t} \\ \text{Then: } a_{i,j}^* &= \frac{1}{\nu_i} \sum_{t=2}^T \xi_{i,j,t} \end{split}$$

$$Q_3(\lambda, \lambda') = \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{i,t} \ln p(\mathbf{x}_t | \mathbf{s}_t = i, \lambda)$$

We still have not spoken about the emission distributions !

$$Q_3(\lambda, \lambda') = \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{i,t} \ln p(\mathbf{x}_t | \mathbf{s}_t = i, \lambda)$$

- $p(\mathbf{x}_t | \mathbf{s}_t = i, \lambda)$ are the emission density functions
- ▶ it should be possible to differentiate the density function wrt its parameters
- We are going to assume that $\forall i, t \in [N] \times [T]$ the emission distributions are either

1. Discrete:
$$p(\mathbf{x}_t | \mathbf{s}_t = i, \lambda) = [b_{i,1}, \dots, b_{i,M}]$$
, with $\sum_{m=1}^{M} b_{i,m} = 1$.

2. GMM:
$$p(\mathbf{x}_t | \mathbf{s}_t = i, \lambda) = \sum_{m=1}^{M} w_{im} \mathcal{N}(\mathbf{x}_t; \mu_{im}, C_{im})$$
, with $\sum_{m=1}^{M} w_{i,m} = 1$

Discrete case: $\mathbf{X}_t \in \{\alpha_1, \dots, \alpha_M\}$. It is useful to define auxiliary random variables when dealing with discrete distributions, i.e. if we observe $\mathbf{X}_t = \mathbf{x}_t = \alpha_m$, we write $\mathbf{Z}_t = m$, then:

$$b_{i,m} = p(\mathbf{X}_t = \alpha_m | \mathbf{S}_t = \mathbf{s}_t, \lambda) = p(\mathbf{Z}_t = m | \mathbf{S}_t = i, \lambda) = \sum_{k=1}^M \mathbb{1}(\mathbf{z}_t = k) p(\mathbf{Z}_t = k | \mathbf{S}_t = i, \lambda)$$

$$Q_3(\lambda, \lambda') = \sum_{t=1}^T \sum_{i=1}^N \gamma_{i,t} \ln \sum_{k=1}^M \mathbb{1}(\mathbf{z}_t = k) p(\mathbf{Z}_t = k | \mathbf{S}_t = i, \lambda)$$
$$Q_3(\lambda, \lambda') = \sum_{t=1}^T \sum_{i=1}^N \gamma_{i,t} \ln \sum_{k=1}^M \mathbb{1}(\mathbf{z}_t = k) b_{i,k}$$

$$Q_3(\lambda, \lambda') = \sum_{t=1}^T \sum_{i=1}^N \gamma_{i,t} \ln \sum_{k=1}^M \mathbb{1}(\mathbf{z}_t = k) b_{i,k}$$

The method is similar to optimizing Q_1 . We take N Lagrange multipliers ν_i .

$$\forall i, m \in [N] \times [T] \frac{\partial}{\partial b_{i,m}} \left[Q_3(\lambda, \lambda') + \nu_i (1 - \sum_{k=1}^M b_{i,k}) \right] \bigg|_{b_{i,m}^*} = 0$$

$$\implies 0 = \sum_{t=1}^T \frac{\gamma_{i,t}}{b_{i,m}^*} \mathbb{1}(\mathbf{z}_t = m) - \nu_i$$
Which gives: $b_{i,m}^* = \frac{1}{\nu_i} \sum_{t=1}^T \gamma_{i,t} \mathbb{1}(\mathbf{z}_t = m), \text{ with } \nu_i = \sum_{k=1}^M \sum_{t=1}^T \gamma_{i,t} \mathbb{1}(\mathbf{z}_t = k)$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

47 / 126

GMM case: We define a random variable to help solve the optimization problem. We augment the latent variable space with $U_t \in \{1, ..., M\}$ which indicates which mixture component is chosen at time t. The joint distribution is now written:

$$p(\mathbf{\underline{x}}, \mathbf{\underline{s}}, \mathbf{\underline{u}} | \lambda) = p(\mathbf{s}_1 | \lambda) p(\mathbf{x}_1, \mathbf{u}_1 | \mathbf{s}_1, \lambda) \prod_{t=2}^{T} p(\mathbf{x}_t, \mathbf{u}_t | \mathbf{s}_t, \lambda) p(\mathbf{s}_t | \mathbf{s}_{t-1}, \lambda)$$

We use the new latent variable as follows, $\forall i, t, m \in [N] \times [T] \times [M]$:

$$p(\mathbf{x}_t, \mathbf{U}_t = m | \mathbf{S}_t = i) = p(\mathbf{x}_t | \mathbf{S}_t = i, \mathbf{U}_t = m) p(\mathbf{U}_t = m | \mathbf{S}_t = i)$$

where $p(\mathbf{x}_t | \mathbf{S}_t = i, \mathbf{U}_t = m) = \mathcal{N}(\mathbf{x}_t; \mu_{i,m}, C_{i,m})$ with mixture weight $w_{i,m} = p(\mathbf{U}_t = m | \mathbf{S}_t = i)$.

We also define $\forall m, i, t \in [M] \times [N] \times [T]$

$$\begin{split} \gamma_{i,m,t} &= p(\mathbf{S}_{t} = i, \mathbf{U}_{t} = m | \underline{\mathbf{x}}, \lambda') \quad \text{Question? How is this related to } \gamma_{i,t} ? \\ &= p(\mathbf{U}_{t} = m | \underline{\mathbf{x}}, \mathbf{S}_{t} = i, \lambda') \underbrace{p(\mathbf{S}_{t} = i | \underline{\mathbf{x}}, \lambda')}_{\gamma_{i,t}} \\ &= \gamma_{i,t} \frac{p(\mathbf{U}_{t} = m, \mathbf{x}_{t} | \mathbf{S}_{t} = i, \underline{\mathbf{x}}_{t' \neq t}, \lambda')}{p(\mathbf{x}_{t} | \mathbf{S}_{t} = i, \lambda')} \\ &= \gamma_{i,t} \frac{p(\mathbf{U}_{t} = m, \mathbf{x}_{t} | \mathbf{S}_{t} = i, \lambda')}{p(\mathbf{x}_{t} | \mathbf{S}_{t} = i, \lambda')} \\ &= \gamma_{i,t} \frac{w_{im} \mathcal{N}(\mathbf{x}_{t}; \mu_{i,m}, C_{i,m})}{\sum_{k=1}^{M} w_{i,k} \mathcal{N}(\mathbf{x}_{t}; \mu_{i,k}, C_{i,k})} \end{split}$$

GMM case: With our new variable \mathbf{U}_t , Q is written:

$$Q(\lambda,\lambda') = \sum_{i_1}^{N} \cdots \sum_{i_T}^{N} \sum_{j_1}^{M} \cdots \sum_{j_T}^{M} p(\underline{\mathbf{S}} = (i_1, \dots, i_T), \underline{\mathbf{U}} = (j_1, \dots, j_T) | \underline{\mathbf{x}}, \lambda') \cdot \ln p(\underline{\mathbf{x}}, \underline{\mathbf{S}} = (i_1, \dots, i_T), \underline{\mathbf{U}} = (j_1, \dots, j_T) | \lambda)$$

In particular,

$$Q_{3}(\lambda,\lambda') = \sum_{t=1}^{T} \sum_{i_{t}=1}^{N} \sum_{j_{t}=1}^{N} p(\mathbf{S}_{t} = i_{t}, \mathbf{U}_{t} = j_{t} | \mathbf{\underline{x}}, \lambda') \ln p(\mathbf{S}_{t}, \mathbf{U}_{t} = j_{t} | \mathbf{S}_{t} = i_{t}, \lambda)$$

$$Q_{3}(\lambda,\lambda') = \sum_{t=1}^{T} \sum_{i_{t}=1}^{N} \sum_{j_{t}=1}^{N} p(\mathbf{S}_{t} = i_{t}, \mathbf{U}_{t} = j_{t} | \mathbf{\underline{x}}, \lambda') \ln p(\mathbf{x}_{t} | \mathbf{U}_{t} = j_{t}, \mathbf{S}_{t} = i_{t}, \lambda) p(\mathbf{U}_{t} = j_{t} | \mathbf{S}_{t} = i_{t}, \lambda)$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

50 / 126

GMM case: With our new variable U_t , Q_3 (with new indices) is written:

$$Q_{3}(\lambda,\lambda') = \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{m=1}^{M} \underbrace{p(\mathbf{S}_{t} = i, \mathbf{U}_{t} = m | \mathbf{x}, \lambda')}_{\gamma_{i,m,t}} \ln p(\mathbf{x}_{t}, \mathbf{U}_{t} = m | \mathbf{s}_{t} = i, \lambda)$$
$$= \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{m=1}^{M} \gamma_{i,m,t} \left(\ln w_{i,m} + \ln \mathcal{N}(\mathbf{x}_{t}; \mu_{i,m}, C_{i,m}) \right)$$
$$\text{and } \gamma_{i,m,t} = \gamma_{i,t} \frac{w_{im} \mathcal{N}(\mathbf{x}_{t}; \mu_{i,m}, C_{i,m})}{\sum_{k=1}^{M} w_{i,k} \mathcal{N}(\mathbf{x}_{t}; \mu_{i,k}, C_{i,k})}$$

The final update is similar to updating a GMM model, $\forall i, m \in [N] \times [M]$:

$$w_{im}^{*} = \frac{\sum_{t} \gamma_{i,m,t}}{\sum_{k=1}^{M} \sum_{t} \gamma_{i,m,t}}$$
$$\mu_{im}^{*} = \frac{\sum_{t} \gamma_{i,m,t} \mathbf{x}_{t}}{\sum_{t} \gamma_{i,m,t}}$$
$$C_{im}^{*} = \frac{\sum_{t} \gamma_{i,m,t} (\mathbf{x}_{t} - \boldsymbol{\mu}_{im}^{*}) (\mathbf{x}_{t} - \boldsymbol{\mu}_{im}^{*})^{T}}{\sum_{t} \gamma_{i,m,t}}$$

Summary

We now have all the update rules to iteratively update the Q function !

Based on *Pattern Recognition Fundamental Theory and Exercise Problems* by ARNE LEIJON & GUSTAV EJE HENTER

Lecture 3 Lagrange multipliers

Optimization with an equality constraint

Remember the maximization problems that we encounter in the maximization steps of the Baum-Welch algorithm.

Problem Statement:

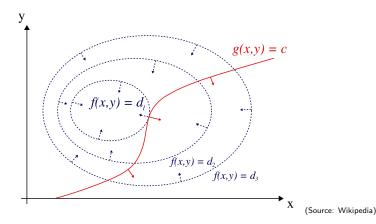
$$\begin{array}{ll} \text{Maximize a function} & f(x,y) \\ \text{Subject to a constraint} & g(x,y) = 0 \end{array} \tag{11}$$

The method of Lagrange multipliers is a method for solving optimization problems with equality constraints.

Main theorem: If it exists, a local maximum is where the level curves of f are tangent to the constraint curve g, i.e. where the gradients of f and g are parallel. **Practically:**

- Maximizing $I(x, y, \lambda) = f(x, y) \lambda g(x, y)$
- By solving for λ and the variables: $\begin{cases} \nabla f \\ g(x,y) \\ = 0 \end{cases} = \lambda \nabla g$
- Solves the constrained problem in (1)

- The gradients ∇f and ∇g determine the direction of greatest increase.
- At an optimal point, these gradients must be **parallel**: $\nabla f = \lambda \nabla g$.
- ▶ This ensures that moving along the constraint does not increase or decrease *f*.

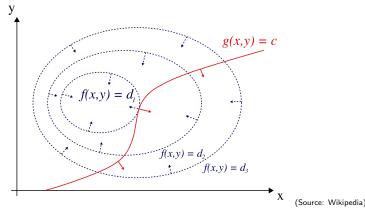


- ► Take a vector space with an inner product (ℝ^d, ⟨.,.⟩) and two functions f, g : ℝ^d → ℝ, such that both are C¹ (derivable with continuous derivatives)
- Suppose that a local maximum of f exists at a point P = (x₁^{*},...,x_d^{*}) on the constraint surface S = {x₁,...,x_d | g(x₁,...,x_d) = 0}.
- Let $r(t) = (x_1(t), \ldots, x_d(t))$ denote a parameterized curve on S, i.e. such that $\forall t \in \mathbb{R} \ g(r(t)) = 0$, and such that r(0) = P.
- Let $h(t) = f(r(t)) = f(x_1(t), \dots, x_d(t))$, h has a local maximum at t = 0.
- The derivative of h is written

$$h'(t) = \langle \nabla f|_{r(t)}, r'(t) \rangle$$

then what ?

- Since P is a local maximum for h(t) = f(r(t)), at t = 0: $h'(0) = \langle \nabla f |_P, r'(0) \rangle = 0$
- This is true ∀ r(t), implying ∇f|P is perpendicular to every curves on the surface at P. Implying ∇f|P is perpendicular to the constraint surface at P, in particular it is parallel with ∇g|P (which is also perpendicular to the surface).



EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

(-√2, 1, 2) (√2, 1, 2) (-√2, -1, -2) (√2, -1, -2) -1.5 0.5 1.5

(Source: Wikipedia, $r = \sqrt{3}$)

Problem: Maximize a function f(x, y), Subject to constraint g(x, y) = 0, with

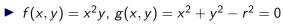
$$f(x,y) = x^2 y$$
, $g(x,y) = x^2 + y^2 - r^2 = 0$

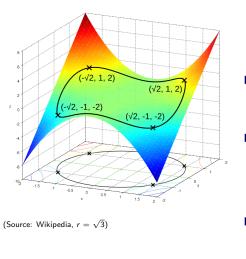
• Question: What shape is g? A circle of radius r

$$\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x^2 + y^2 - r^2)$$

$$\begin{aligned} \nabla_{x,y,\lambda} \mathcal{L}(x,y,\lambda) &= \left(\frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial \lambda}\right) \\ \nabla_{x,y,\lambda} \mathcal{L}(x,y,\lambda) &= 0 \Leftrightarrow \begin{cases} 2xy + 2\lambda x = 0\\ x^2 + 2\lambda y = 0\\ x^2 + y^2 - r^2 = 0 \end{cases} \\ &\Leftrightarrow \begin{cases} x(y+\lambda) = 0 \quad (a)\\ x^2 = -2\lambda y \quad (b)\\ x^2 + y^2 = r^2 \quad (c) \end{cases} \end{aligned}$$

An example in \mathbb{R}^2





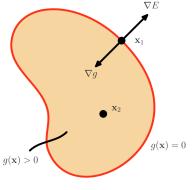
$$\begin{aligned}
x(y+\lambda) &= 0 \quad (a) \\
x^2 &= -2\lambda y \quad (b) \\
x^2 + y^2 &= r^2 \quad (c)
\end{aligned}$$
(a) $\implies x = 0 \text{ or } \lambda = -y$

$$x = 0 \implies y = \pm r(c) \text{ and thus } \lambda = 0(b) \\
\lambda &= -y \implies x = \pm y\sqrt{2}(b), \ y = \pm \frac{r}{\sqrt{3}}(c)
\end{aligned}$$
6 possible critical points for $\mathcal{L}: (0, r, 0), (0, -r, 0); (r\sqrt{\frac{2}{3}}, \frac{r}{\sqrt{3}}, -\frac{r}{\sqrt{3}}), (r\sqrt{\frac{2}{3}}, -\frac{r}{\sqrt{3}}, \frac{r}{\sqrt{3}}); (-r\sqrt{\frac{2}{3}}, \frac{r}{\sqrt{3}}, -\frac{r}{\sqrt{3}}), (-r\sqrt{\frac{2}{3}}, -\frac{r}{\sqrt{3}}, \frac{r}{\sqrt{3}}).$
the objective: $f(\pm r\sqrt{\frac{2}{3}}, \frac{r}{\sqrt{3}}) = \frac{2r^3}{3\sqrt{3}}; f(0, \pm r) = 0.$

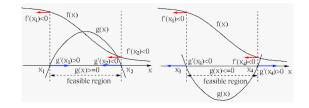
EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

61 / 126

Inequality constraints



Bishop)



- Suppose a constraint g(x) ≥ 0. Then ∇g on the border points "inside" the feasible region.
- If maximizing, (unless the global max is inside the feasible region), ∇f must point outside, in opposite direction to ∇g, i.e.∇f = −λ∇g for λ > 0.
- KKT conditions formalize Lagrangian multipliers to inequality constraints.

More Material:

- https://pages.hmc.edu/ruye/MachineLearning/lectures/ch3/node13.html
- https://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/ LagrangeMultipliers.pdf
- https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/ ebbeb8e61827a8058d2c45b674d003b3_MIT18_02SC_notes_22.pdf
- Convex optimization by Steph Boyd: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
- Pattern Recognition and Machine Learning by Chris Bishop

Lecture 4 Bayesian learning and variational inference.

Problem with maximum likelihood

- Sometimes the maximum likelihood estimate of the parameters of a statistical models lead to un-intuitive results.
- e.g. coin toss: estimate "fairness" of a coin
 - Observe T throws, modeled with observations x₁,..., x_T either 1 or 0, of a random variable X.
 - Estimate w, the parameter of a binomial distribution: p(X = +1) = w.
 - The ML estimate is then $w_{ML} = \frac{\sum_t x_t}{T}$.
 - Say you have the results of 3 throws, observing 3 times 1 will make you conclude that w = 1 and all the future will for sure be 1.
 - it could be a coincidence, but your estimation does not take into account your prior knowledge about the problem.

 \implies there are ways to incorporate apriori knowledge in a parameter estimation problem, one such way is called Bayesian learning.

Problem with maximum likelihood When learning from data \mathbf{x}

▶ the ML estimate formulated as

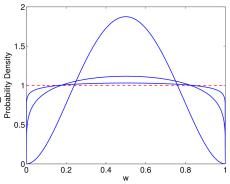
$$w_{ML} = \arg\max_{w} p(\underline{\mathbf{x}}|W = w)$$
(12)

can be replaced with

$$w_{MAP} = \arg\max_{w} p(W = w | \underline{\mathbf{x}}) \propto p(\underline{\mathbf{x}} | W = w) p(W = w), \tag{13}$$

provided that we formulate our apriori knowledge as a density p(W = w), (e.g. a uniform, Gaussian, ...).

- Subjective informative prior: Our belief inform the statistical model for W.
- Subjective non-informative prior: Our belief is that we don't have any information about a parameter W.
 - Say that the new parameter U is related to W as U = g(W). One must make sure to have a uniform prior also on U.
 - How to do this ?
- Objective non-informative prior: Jeffreys prior is a unique way to define a non-informative prior, which is the same regardless of the choice of g.



Prior invariance

- Suppose a statistical model p(X|W), a principle to choose a prior gives you p(W).
- Suppose you re-parameterize W as U = g(W). This gives a new statistical model p(X|U). Applying the same principle to obtain a prior gives you p(U).
- Instead of reparameterizing W, you reparameterize the prior p(W). This gives yet another prior

$$\forall u \in \mathcal{U} \quad \bar{p}(u) = p(g^{-1}(u))|g'(g^{-1}(u))|^{-1}.$$

Prior invariance means that

$$egin{array}{lll} orall u \in \mathcal{U} & p(u) = ar{p}(g(w)) \ &= p(w) |g'(w)|^{-1} \end{array}$$

i.e. a prior obtained applying a principle should remain the same after transformation.

Fisher information

▶ if the prior on W is defined according to Jeffreys principle:

$$\forall w \in \mathcal{W} \quad p(W = w) \propto \sqrt{\det I(w)},$$

where I(w) is the fisher information matrix, $\forall (i,j) \in [K]^2$

$$\begin{split} I_{ij}(w) &= E_{p(X|W=w)} \left[\left(\frac{\partial \ln p(X|W=w)}{\partial w_i} \right) \left(\frac{\partial \ln p(X|W=w)}{\partial w_j} \right) \right] \\ &= -E_{p(X|W=w)} \left[\frac{\partial^2 \ln p(X|W=w)}{\partial w_i \partial w_j} \right] \end{split}$$

then the prior is invariant

Fisher information

Let's prove the equality in the definition for a parameter $w \in \mathbb{R}$

$$I(w) = E_{p(X|W=w)} \left[\left(\frac{\partial \ln p(X|W=w)}{\partial w} \right) \left(\frac{\partial \ln p(X|W=w)}{\partial w} \right) \right]$$
$$= -E_{p(X|W=w)} \left[\left(\frac{\partial^2 \ln p(X|W=w)}{\partial w^2} \right) \right].$$

This is true because $\forall w \in \mathcal{W}$:

$$\frac{\partial^2 \ln p(X|W=w)}{\partial w^2} = \frac{\partial}{\partial w} \left[\frac{\partial \ln p(X|W=w)}{\partial w} \right]$$
$$= \frac{\frac{\partial^2 p(X|w)}{\partial w^2}}{p(X|w)} - \left(\frac{\frac{\partial p(X|w)}{\partial w}}{p(X|w)} \right)^2$$

Fisher information Also,

$$E_{p(X|W=w)}\left[\frac{\frac{\partial^2 p(X|w)}{\partial w^2}}{p(X|w)}\right] = \int p(X=x|w)\frac{\frac{\partial^2 p(X=x|w)}{\partial w^2}}{p(X=x|w)}dx = \int \frac{\partial^2 p(X=x|w)}{\partial w^2}dx$$
$$= \frac{\partial^2}{\partial w^2}\int p(X=x|w)dx = \frac{\partial^2}{\partial w^2}1 = 0$$

thus

$$E_{p(X|W=w)}\left[\frac{\partial^2 \ln p(X|W=w)}{\partial w^2}\right] = -E_{p(X|W=w)}\left[\left(\frac{\frac{\partial p(X|w)}{\partial w}}{p(X|w)}\right)^2\right]$$
$$= -E_{p(X|W=w)}\left[\left(\frac{\partial \ln p(X|w)}{\partial w}\right)^2\right]$$

Applications

What is the Jeffreys prior density for the standard deviation parameter of a Gaussian density with unknown mean and standard dev.? Ilh: $\ln f(X|\mu, \sigma) = -\ln \sigma - \frac{(X-\mu)^2}{2\sigma^2} + \text{cst}$ Let's calculate the Fisher information:

$$\begin{split} l_{11}(\mu,\sigma) &= -E_{p(X|\mu,\sigma)} \left[\frac{\partial^2 \ln p(X|\mu,\sigma)}{\partial \mu^2} \right] = \frac{1}{\sigma^2} \\ l_{22}(\mu,\sigma) &= -E_{p(X|\mu,\sigma)} \left[\frac{\partial^2 \ln p(X|\mu,\sigma)}{\partial \sigma^2} \right] \\ &= E_{p(X|\mu,\sigma)} \left[-\frac{1}{\sigma^2} + \frac{3X^2}{\sigma^4} \right] \\ &= -\frac{1}{\sigma^2} + \frac{3E_{p(X|\mu,\sigma)}[(X-\mu)^2]}{\sigma^4} = -\frac{1}{\sigma^2} + \frac{3\sigma^2}{\sigma^4} = \frac{2}{\sigma^2} \\ l_{12}(\mu,\sigma) &= l_{21}(\mu,\sigma) = -E_{p(X|\mu,\sigma)} \left[\frac{\partial^2 \ln p(X|\mu,\sigma)}{\partial \mu \partial \sigma} \right] = 0 \end{split}$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

72 / 126

Applications

What is the Jeffreys prior density for the standard deviation parameter of a Gaussian density with zero mean? $\ln p(X|\mu,\sigma) = -\ln \sigma - \frac{(X-\mu)^2}{2\sigma^2} + \text{cst.}$ The Jeffreys prior is

$$p(\mu,\sigma) \propto \sqrt{\det I(\mu,\sigma)} \propto rac{1}{\sigma^2}$$

which is not a proper density function (does integrate to 1, cannot be normalized).

Applications

▶ However, the joint prior can be used as the asymptote of another distribution:

$$p(\mu,\sigma) = p_1(\mu|\sigma)p_2(\sigma) = \frac{\sqrt{\beta}}{\sqrt{2\pi\sigma}}e^{\frac{\mu^2\beta}{2\sigma^2}} \cdot \frac{(b\sigma)^a}{\Gamma(a)}\frac{1}{\sigma}e^{-b\sigma},$$

the Normal-Gamma(μ, σ, β, a, b), when $\beta, a, b \rightarrow 0$.

- The Normal-Gamma distribution is a *conjugate prior* for the joint prior $p(\mu, \sigma)$,
- ▶ i.e. given a likelihood, p(X|μ, σ), p(μ, σ) is Normal-Gamma ⇒ the posterior p(μ, σ|X) is also Normal-Gamma. This is convenient and so we always try to choose a conjugate prior for the likelihood.

- Suppose a Latent variable model p(X, S).
- ▶ What if the posteriors cannot be written in closed form ?
- Then we make a model for it: q(S|X), or simply q(S).
- ▶ And we learn that model by minimizing $D_{KL}(q(S|X)||p(S|X))$ wrt. q(S|X).
- ► KL divergence ?

KL divergence

The Kullback–Leibler (KL) divergence measures how a probability distribution q is different from a another distribution p.

• q and p must have the same support \mathcal{X} .

$$\blacktriangleright \quad \forall x \in \mathcal{X} \ p(x) = 0 \implies q(x) = 0$$

Definition for a random variable $X \in \mathcal{X}$:

$$D_{KL}(q(X)||p(X)) = E_q \left[\ln \frac{q}{p} \right] = \int_{\mathcal{X}} q(x) \ln \frac{q(x)}{p(x)} dx$$

Questions:

- 1. What is $D_{KL}(\mathcal{U}(a, b)||\mathcal{U}(c, d))$?
- 2. What is $D_{KL}(\mathcal{N}(\mu_p, \Sigma_p) || \mathcal{N}(\mu_q, \Sigma_q))$, both in *k*-dimension?

$$D_{KL}(q(X)||p(X)) = E_q\left[\ln\frac{q}{p}\right] = \int_{\mathcal{X}} q(x)\ln\frac{q(x)}{p(x)}dx$$

KL divergence between uniform distributions Let p(X) = U(a, b), q(X) = U(c, d). Assumptions on a, b, c, d? $[a, b] \subseteq [c, d]$.

$$D_{KL}(p||q) = \int_{a}^{b} p(x) \ln \frac{p(x)}{q(x)} dx$$
$$= \int_{a}^{b} \frac{1}{b-a} \ln \frac{d-c}{b-a} dx$$
$$= \frac{1}{b-a} \ln \frac{d-c}{b-a} \left[\int_{a}^{b} dx \right]$$
$$= \ln \frac{d-c}{b-a}$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

1

$$D_{KL}(q(X)||p(X)) = E_q\left[\ln\frac{q}{p}\right] = \int_{\mathcal{X}} q(x)\ln\frac{q(x)}{p(x)}dx$$

KL divergence between Normal distributions
Let
$$p(x) = \mathcal{N}(x; \mu_p, \Sigma_p)$$
, $q(x) = \mathcal{N}(x; \mu_q, \Sigma_q)$.
Recall, $p(x) = \frac{1}{(2\pi)^{k/2}|\Sigma_1|^{1/2}} e^{-\frac{1}{2}(x-\mu_p)^T \Sigma_p^{-1}(x-\mu_p)}$.

$$D_{KL}(p||q) = E_{p}[\ln p - \ln q]$$

$$D_{KL}(p||q) = E_{p}\left[\frac{1}{2}\ln\frac{|\Sigma_{p}|}{|\Sigma_{q}|} - \frac{1}{2}(x - \mu_{p})^{T}\Sigma_{p}^{-1}(x - \mu_{p}) + \frac{1}{2}(x - \mu_{q})^{T}\Sigma_{q}^{-1}(x - \mu_{q})\right]$$

$$= \frac{1}{2}\left[\ln\frac{|\Sigma_{p}|}{|\Sigma_{q}|} - E_{p}\left[(x - \mu_{p})^{T}\Sigma_{p}^{-1}(x - \mu_{p})\right] + E_{p}\left[(x - \mu_{q})^{T}\Sigma_{q}^{-1}(x - \mu_{q})\right]\right]$$

KL divergence between Normal distributions

$$D_{KL}(p||q) = \frac{1}{2} \left[\ln \frac{|\Sigma_{p}|}{|\Sigma_{q}|} - \underbrace{E_{p}\left[(x - \mu_{p})^{T}\Sigma_{p}^{-1}(x - \mu_{p})\right]}_{(1)} + \underbrace{E_{p}\left[(x - \mu_{q})^{T}\Sigma_{q}^{-1}(x - \mu_{q})\right]}_{(2)} \right] \\ (1) \quad (x - \mu_{p})^{T}\Sigma_{p}^{-1}(x - \mu_{p}) \in \mathbb{R}, \text{ thus } = \operatorname{tr}((x - \mu_{p})(x - \mu_{p})^{T}\Sigma_{p}^{-1}) \\ E_{p}[\dots] = \operatorname{tr}(E_{p}\left[(x - \mu_{p})(x - \mu_{p})^{T}\right]\Sigma_{p}^{-1}) = \operatorname{tr}(I_{k}) = k \\ (2) \quad E_{p}\left[(x - \mu_{q})^{T}\Sigma_{q}^{-1}(x - \mu_{q})\right] = (\mu_{p} - \mu_{q})^{T}\Sigma_{q}^{-1}(\mu_{p} - \mu_{q}) + \operatorname{tr}(\Sigma_{q}^{-1}\Sigma_{p}) \\ E_{q}. 380 \text{ in Matrix Cookbook} \\ \text{Finally: } D_{KL}(p||q) = \frac{1}{2}\left[\ln \frac{|\Sigma_{p}|}{|\Sigma_{q}|} - k + (\mu_{p} - \mu_{q})^{T}\Sigma_{q}^{-1}(\mu_{p} - \mu_{q}) + \operatorname{tr}(\Sigma_{q}^{-1}\Sigma_{p})\right] \right]$$

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

79/126

- What if the posteriors cannot be written in closed form ?
- then we make a model for it: q(S|X), or simply q(S).
- ▶ and we learn that model by minimizing $D_{KL}(q(S|X)||p(S|X))$ wrt. q(S|X).
- How do we do that computationally ? We said we couldn't write the true posterior in closed form ? Let's look at the KL divergence more in details.

$$D_{KL}(q(S|X)||p(S|X)) = \sum_{s} q(S = s|X) \ln \frac{q(S = s|X)}{p(S = s|X)}$$
$$= \sum_{s} q(S = s|X) \ln \frac{q(S = s|X)p(X)}{p(X|S)p(S)}$$
$$= \sum_{s} q(S = s|X) \left[\ln \frac{1}{p(X|S)} + \ln \frac{q(S = s|X)}{p(S)} + \ln p(X) \right]$$

$$D_{KL}(q(S|X)||p(S|X)) = \sum_{s} q(S = s|X) \left[\ln \frac{1}{p(X|S = s)} + \ln \frac{q(S = s|X)}{p(S = s)} + \ln p(X) \right]$$
$$= -E_{q(S|X)}[\ln p(X|S)] + D_{KL}[q(S|X)||p(S)] + \ln p(X)$$

Finally:

$$\ln p(X) = \underbrace{D_{\mathcal{KL}}(q(S|X)||p(S|X))}_{\geq 0} \underbrace{-D_{\mathcal{KL}}[q(S|X)||p(S)] + E_{q(S|X)}[\ln p(X|S)]}_{\mathcal{L}_{ELBO}(q)}$$
$$\ln p(X) \geq \mathcal{L}_{ELBO}(q)$$

$$\ln p(X) \geq \mathcal{L}_{ELBO}(q) = -D_{\mathcal{K}L}[q(S|X)||p(S)] + E_{q(S|X)}[\ln p(X|S)]$$

- Maximizing the ELBO, minimizes $D_{KL}(q(S|X)||p(S|X))$, and learns to approximate the posterior distribution
- ► The ELBO can also be expressed as follows:

$$\mathcal{L}_{ELBO}(q) = -D_{KL}[q(S|X)||p(S)] + E_{q(S|X)}[\ln p(X|S)]$$

= $E_{q(S|X)} \left[\ln \frac{p(S)}{q(S|X)} \right] + E_{q(S|X)}[\ln p(X|S)]$
= $E_{q(S|X)} \left[\ln \frac{p(X,S)}{q(S|X)} \right]$
= $E_{q(S|X)} \left[\ln p(X,S) \right] - E_{q(S|X)} [\ln q(S|X)]$

Variational Inference (VI)

Coordinate Ascent Variational Inference (CAVI)

- ► We are approximating the posterior distribution with a distribution q(S|X), we are free to choose it's form.
- A simple one is the mean field approximation:

L.

$$p(\underline{\mathbf{S}}|\underline{\mathbf{X}}) pprox q(\underline{\mathbf{S}}|\underline{\mathbf{X}}) = q(\underline{\mathbf{S}}) = q_1(\mathbf{S}_1) \dots q_T(\mathbf{S}_T) = q_1 \dots q_T$$

• The q_t factors are learnt one by one, let's optimize t = i.

$$ELBO = E_{q(\mathbf{S})} \left[\ln p(\mathbf{X}, \mathbf{S}) \right] - E_{q(\mathbf{S})} \left[q(\mathbf{S} | \mathbf{X}) \right]$$
$$= E_{q(\mathbf{S})} \left[\ln p(\mathbf{X}, \mathbf{S}) \right] - E_{q(\mathbf{S})} \left[\sum_{t}^{T} \ln q_{t} \right]$$
$$= E_{q(\mathbf{S})} \left[\ln p(\mathbf{X}, \mathbf{S}) \right] - E_{q_{1} \dots q_{T}} \left[\sum_{t}^{T} \ln q(\mathbf{S}_{t}) \right]$$
$$= E_{q(\mathbf{S})} \left[\ln p(\mathbf{X}, \mathbf{S}) \right] - \sum_{t}^{T} E_{q_{1} \dots q_{T}} \left[\ln q_{t} \right]$$

Variational Inference (VI)

Coordinate Ascent Variational Inference (CAVI)

- ► We are approximating the posterior distribution with a distribution q(S|X), we are free to choose it's form.
- A simple one is the so-called mean field approximation:

$$p(\underline{\mathbf{S}}|\underline{\mathbf{X}}) pprox q(\underline{\mathbf{S}}|\underline{\mathbf{X}}) = q(\underline{\mathbf{S}}) = q_1(\mathbf{S}_1) \dots q_T(\mathbf{S}_T) = q_1 \dots q_T$$

• The q_t factors are learnt one by one, let's optimize t = i.

$$\mathcal{L}_{ELBO} = \dots = E_{q(\underline{\mathbf{S}})} \left[\ln p(\underline{\mathbf{X}}, \underline{\mathbf{S}}) \right] - \sum_{t}^{T} E_{q_{t}} \left[\ln q_{t} \right]$$
$$= E_{q_{1}\dots q_{T}} \left[\ln p(\underline{\mathbf{X}}, \mathbf{S}_{1}, \dots, \mathbf{S}_{T}) \right] - E_{q_{i}} \left[\ln q_{i} \right] + C$$
$$= E_{q_{i}} \left[E_{q_{j} \neq i} \left[\ln p(\underline{\mathbf{X}}, \mathbf{S}_{i}, \mathbf{S}_{j \neq i}) \right] \right] - E_{q_{i}} \left[\ln q_{i} \right] + C$$
$$\text{Let } \ln \tilde{p}(\mathbf{S}_{i}) = E_{q_{j} \neq i} \left[\ln p(\underline{\mathbf{X}}, \mathbf{S}_{i}, \mathbf{S}_{j \neq i}) \right] + cst$$

► The
$$q_t$$
 factors are learnt one by one, let's optimize $t = i$.

$$\mathcal{L}_{ELBO} = \cdots = E_{q_i} [\ln \tilde{p}(\mathbf{S}_i)] - E_{q_i} [\ln q_i] + C$$

$$= -D_{\mathcal{KL}} (q_i || \tilde{p}(\mathbf{S}_i)) + C$$

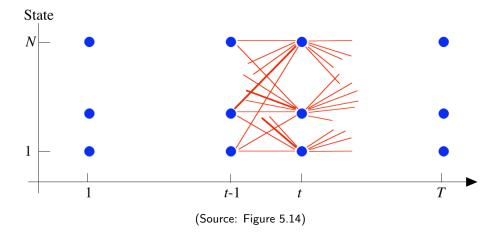
The divergence is minimized (\mathcal{L}_{ELBO} maximized) when $q_i = \tilde{p}(\mathbf{S}_i)$, i.e.

$$q_i^* \propto \exp\left(E_{q_j
eq i}\left[\ln p(\mathbf{\underline{X}}, \mathbf{S}_i, \mathbf{S}_{j
eq i})
ight]
ight)$$

Based on *Pattern Recognition Fundamental Theory and Exercise Problems* by ARNE LEIJON & GUSTAV EJE HENTER

https://brunomaga.github.io/Variational-Inference-GMM

Lecture 5 Viterbi



Decoding a sequence of observed variables

Finding the best value of the latent sequence

$$\widehat{(i_{1}\cdots i_{T})} = \arg\max_{(i_{1}\cdots i_{T})} P[\mathbf{S}_{1} = i_{1}, \dots, \mathbf{S}_{T} = i_{T} \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{T}, \lambda]$$

$$= \arg\max_{(i_{1}\cdots i_{T})} \frac{P[\mathbf{S}_{1} = i_{1}, \dots, \mathbf{S}_{T} = i_{T}, \mathbf{x}_{1}, \dots, \mathbf{x}_{T} \mid \lambda]}{P[\mathbf{x}_{1}, \dots, \mathbf{x}_{T} \mid \lambda]}$$

$$= \arg\max_{(i_{1}\cdots i_{T})} P[\mathbf{S}_{1} = i_{1}, \dots, \mathbf{S}_{T} = i_{T}, \mathbf{x}_{1}, \dots, \mathbf{x}_{T} \mid \lambda]$$

$$= \arg\max_{(i_{1}\cdots i_{T})} \log P[\mathbf{S}_{1} = i_{1}, \dots, \mathbf{S}_{T} = i_{T}, \mathbf{x}_{1}, \dots, \mathbf{x}_{T} \mid \lambda]$$

This is saying that the sequence of states which maximizes the posterior distribution, also maximizes the log-joint distribution.

We define the Viterbi variable:

$$\chi_{j,t} = \max_{(i_1,\ldots,i_{t-1})} P[\mathbf{S}_1 = i_1,\ldots,\mathbf{S}_{t-1} = i_{t-1},\mathbf{S}_t = j,\mathbf{x}_1,\ldots,\mathbf{x}_t|\lambda]$$

► The probability that the best path ends in *j* at time *t* after having observed **x**_t. It can be computed recursively !

$$\begin{aligned} \chi_{j,t} &= \max_{(i_1,\dots,i_{t-1})} P[\mathbf{S}_t = j, \mathbf{x}_t | i_1, \dots, i_{t-1}, \mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \lambda] P[i_1, \dots, i_{t-1}, \mathbf{x}_1, \dots, \mathbf{x}_{t-1} | \lambda] \\ &= \max_{i_{t-1}} P[\mathbf{S}_t = j, \mathbf{x}_t | \mathbf{S}_{t-1} = i_{t-1}, \lambda] \max_{(i_1,\dots,i_{t-2})} P[i_1,\dots, \mathbf{S}_{t-1} = i_{t-1}, \mathbf{x}_1,\dots, \mathbf{x}_{t-1} | \lambda] \\ &= \max_i P[\mathbf{x}_t | \mathbf{S}_t = j, \lambda] P[\mathbf{S}_t = j | \mathbf{S}_{t-1} = i] \chi_{i,t-1} \\ &= P[\mathbf{x}_t | \mathbf{S}_t = j, \lambda] \max_i a_{i,j} \chi_{i,t-1} \end{aligned}$$

Viterbi variable:

$$\chi_{j,t} = \max_{(i_1,\ldots,i_{t-1})} P[\mathbf{S}_1 = i_1,\ldots,\mathbf{S}_{t-1} = i_{t-1},\mathbf{S}_t = j,\mathbf{x}_1,\ldots,\mathbf{x}_t|\lambda]$$

Probability of the best path ending in state j after having observed \mathbf{x}_t at time t. After iterating up to time t = T:

- ▶ When we have computed the variable up to time *T*,
- $\max_j \chi_{j,T}$ is the value of the joint probability of the best sequence of states.
- However, we want the sequence of states it self

At t = T:

- We can get $\hat{i}_T = \arg \max_j \chi_{j,T}$
- We decode the rest of the indices backwards, for t = T 1, ..., 1:

$$\hat{i}_t = \arg\max_i \chi_{i,t} a_{i,\hat{i}_{t+1}} = \arg\max_i \chi_{i,t} P[\mathbf{S}_{t+1} = \hat{i}_{t+1} | \mathbf{S}_t = i]$$

There is a factorization of the joint distribution that is useful:

$$P[i_1, \dots, i_t, \dots, i_T, \mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T \mid \lambda]$$

= $P[i_{t+1}, \dots, i_T, \mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid i_1, \dots, i_t, \mathbf{x}_1, \dots, \mathbf{x}_t, \lambda] \cdot P[i_1, \dots, i_t, \mathbf{x}_1, \dots, \mathbf{x}_t \mid \lambda]$
= $P[i_{t+1}, \dots, i_T, \mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid i_t, \lambda] \cdot P[i_1, \dots, i_t, \mathbf{x}_1, \dots, \mathbf{x}_t \mid \lambda]$

► Next we maximize

$$\max_{(i_{1}\cdots i_{T})} P[i_{1},\ldots,i_{t},\ldots,i_{T},\mathbf{x}_{1},\ldots,\mathbf{x}_{t},\ldots,\mathbf{x}_{T} \mid \lambda]$$

$$= \max_{i_{t}} \max_{(i_{1}\cdots i_{t-1})} \max_{(i_{t+1}\cdots i_{T})} \underbrace{P[i_{t+1},\ldots,i_{T},\mathbf{x}_{t+1},\ldots,\mathbf{x}_{T} \mid i_{t},\lambda]}_{f(i_{t})} \cdot \underbrace{P[i_{1},\ldots,i_{t},\mathbf{x}_{1},\ldots,\mathbf{x}_{t} \mid \lambda]}_{g(i_{t})}$$

$$= \max_{i_{t}} \left(\max_{(i_{t+1}\cdots i_{T})} P[i_{t+1},\ldots,i_{T},\mathbf{x}_{t+1},\ldots,\mathbf{x}_{T} \mid i_{t},\lambda] \right) \cdot \left(\max_{(i_{1}\cdots i_{t-1})} P[i_{1},\ldots,i_{t},\mathbf{x}_{1},\ldots,\mathbf{x}_{t} \mid \lambda] \right)$$

Maximization

$$\max_{(i_1\cdots i_T)} P[i_1,\ldots,i_t,\ldots,i_T,\mathbf{x}_1,\ldots,\mathbf{x}_T \mid \lambda] = \max_{i_t} \left(\max_{(i_{t+1}\cdots i_T)} P[i_{t+1},\ldots,i_T,\mathbf{x}_{t+1},\ldots,\mathbf{x}_T \mid i_t,\lambda] \right) \cdot \left(\max_{(i_1\cdots i_{t-1})} P[i_1,\ldots,i_t,\mathbf{x}_1,\ldots,\mathbf{x}_t \mid \lambda] \right)$$

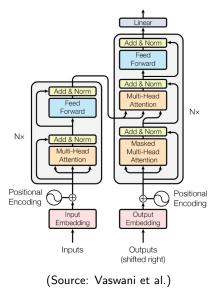
Decoding:

$$\hat{i}_t = \arg \max_i \chi_{i,t} a_{i,\hat{i}_{t+1}}$$

More Material:

- Pattern Recognition and Machine Learning by Chris Bishop
- https://www.cl.cam.ac.uk/teaching/1617/MLRD/slides/slides9.pdf

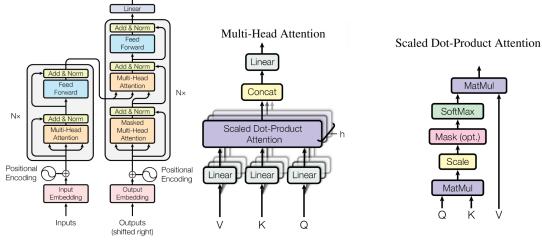
Lecture 6 Transformers



- From a sequence $X = [\mathbf{x}_1, \dots, \mathbf{x}_T]^T \in \mathbb{R}^{T \times d}$ produces another sequence $Y = [\mathbf{y}_1, \dots, \mathbf{y}_T]^T \in \mathbb{R}^{T \times q}$.
- An encoding-decoding architecture for sequence to sequence tasks, i.e. there is an intermediate sequence:

$$\underline{\mathbf{z}} = [\mathbf{z}_1, \ldots, \mathbf{z}_T].$$

- Linear : $X' = XW \in \mathbb{R}^{T \times d'}$.
- Feed-Forward : $X' = MLP(X) \in \mathbb{R}^{T \times d'}$.

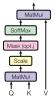


⁽Source: Vaswani et al.)

Scaled Dot-Product Attention

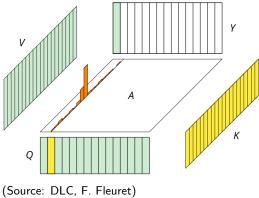
► $Q \in \mathbb{R}^{T \times D}, K \in \mathbb{R}^{T \times D}, V \in \mathbb{R}^{T \times q}$ are transforms of $X \in \mathbb{R}^{T \times d}$

$$Y = AV$$
, with $A = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{D}}\right) \in \mathbb{R}^{T \times T}$



- ► $\forall i \in [T], \quad \mathbf{y}_i = \operatorname{softmax}\left(\frac{\mathbf{q}_i \kappa^{T}}{\sqrt{D}}\right) V = \sum_{j=1}^{T} \mathbf{v}_j \alpha_{i,j} \in \mathbb{R}^q$. The output is a weighted sum of the values.
- ► The attention weights are: $\alpha_{i,j} = \frac{e^{\mathbf{q}_i \mathbf{k}_j^T / \sqrt{D}}}{\sum_{j'} e^{\mathbf{q}_i \mathbf{k}_{j'}^T / \sqrt{D}}} = \frac{f(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{j'} f(\mathbf{q}_i, \mathbf{k}_{j'})}$ with a kernel defined $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^D \times \mathbb{R}^D, \quad f(\mathbf{x}, \mathbf{y}) = e^{\mathbf{x}\mathbf{y}^T / \sqrt{D}} > 0.$
- ▶ Kernels (similarity) can be used to define conditional probabilities: p(k_j|q_i) = f(q_i,k_j)/∑_{j'} f(q_i,k_{j'}).
 ▶ This means that ∀i ∈ [T], y_i = ∑_j p(k_j|q_i)v_j = E_{p(k_j|q_i)}[v_j]

Visually: Given a query sequence Q, a key sequence K, and a value sequence V, compute an attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.



A big issue is that we have to represent matrix A in memory, making the memory footprint quadratic in T !

- The quadratic complexity issue can be addressed by replacing the softmax function (work by Fleuret et al.).
- Express the kernel f as a scalar product of some feature mapping $\varphi : \mathbb{R}^D \to \mathbb{R}^{D'}$

$$f(\mathbf{x},\mathbf{y}) = \varphi(\mathbf{x})\varphi(\mathbf{y})^{\mathsf{T}}$$

$$\mathbf{y}_{i} = \sum_{j} \frac{f(\mathbf{q}_{i}, \mathbf{k}_{j})\mathbf{v}_{j}}{\sum_{j'} f(\mathbf{q}_{i}, \mathbf{k}_{j'})} = \frac{\varphi(\mathbf{q}_{i}) \sum_{j} \varphi(\mathbf{k}_{j})^{T} \mathbf{v}_{j}}{\varphi(\mathbf{q}_{i}) \sum_{j'} \varphi(\mathbf{k}_{j'})^{T}}$$

- With the numerator in matrix form: $(\varphi(Q)\varphi(K)^T) V = \varphi(Q) (\varphi(K)^T V)$
- ► i.e. (\(\varphi(K)^T V)\) is computed once and reused for every query, reducing the complexity from O(T²) to O(T) !
- ▶ The price to pay is that we only get an approximation of the softmax kernel.

- Position information is lost in transformers: invariance to row swaps in K and V
- ► Also, timestamp are in general unbounded, can differ from sequence to sequence
- ▶ PE's goal: Representing timestamps in high dimension D (an even number): $f(t) = [PE_1(t), PE_2(t), ...]$

$$\begin{cases} PE_{2k}(t) = \sin\left(\frac{t}{L^{\frac{2k}{D}}}\right) \\ PE_{2k+1}(t) = \cos\left(\frac{t}{L^{\frac{2k}{D}}}\right) \end{cases}, k = 0, \dots, D/2 - 1 \end{cases}$$

• A sin wave of frequency f[Hz]:

$$t\mapsto \sin(2\pi ft)=\sin(\omega t),$$

▶ i.e. positional encoding represents time in high dimension by sampling D/2 sine waves of increasing wavelength: ω_k = L^{2k/D}, where L is the maximum frequency.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

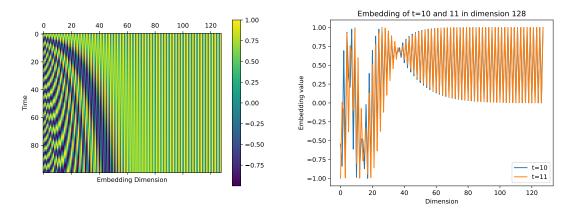
101 / 126

Representing timestamps in high dimension D (an even number):
f(t) = [PE₁(t), PE₂(t), ...]

$$\begin{cases} PE_{2k}(t) = \sin\left(\frac{t}{L^{\frac{2k}{D}}}\right) \\ PE_{2k+1}(t) = \cos\left(\frac{t}{L^{\frac{2k}{D}}}\right) \end{cases}, k = 0, \dots, D/2 - 1 \end{cases}$$

- Suppose that PE is used such that Q = XW^Q + PE and K = XW^K + PE where W^Q and W^K are two trainable linear transforms
- Question: Write the scalar product between a query at instant t and a key at instant t'.

Example with a time indices $t = 1, \dots, 100$, L = 10000, D = 128.



• Used as a generative model for time series \underline{x}

$$p(\underline{\mathbf{x}}) = \prod_{t=1}^{T} p(\mathbf{x}_t | \mathbf{x}_{t-1}, \dots, \mathbf{x}_1)$$

- ► The pretraining loss of GPT models is the log-likelihood!
- Question : Draw this joint distribution
- Question : in this case what is the output time series ?

$$\flat \mathbf{y}_t = p(\mathbf{x}_t | \mathbf{x}_{t-1}, \dots, \mathbf{x}_1)$$

Example sequence to sequence task.

- Vaswani et al. https://arxiv.org/pdf/1706.03762v5.pdf
- Blog post on positional encoding: https://machinelearningmastery.com/ a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1
- Deep learning course by F. Fleuret https: //fleuret.org/public/EN_20220809-Transformers/transformers-slides.pdf
- Linear transformers by F. Fleuret et al. https://proceedings.mlr.press/v119/katharopoulos20a.html

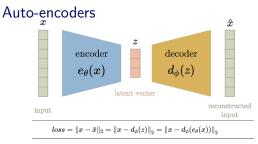
Lecture 7: Variational Auto-encoders

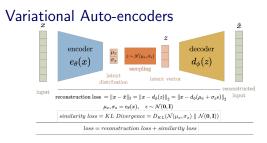
- ► There are multiple ways to represent data (e.g. colors: RGB, HSV, HSL, CMYK,...).
- Going from one way to another is called encoding.
- Decoding means going back to the previous representation.

Questions:

- 1. Why is it interesting to represent data differently ?
 - For doing something with it, i.e. for downstream tasks: transmission, inference. Certain ways to represent data are more efficient.
 - ► Typically there are redundancy in raw signals (e.g. images, speech)
- ▶ It's not always clear what's the best representation for a particular downstream task.
- Best to learn it !

- A compressed version of the data is an interesting representation
- Especially when the downstream task is unspecified.
- Auto-encoding is one way to compress data.
- The compressed representation is also called a latent representation.





 Hard to control the structure of the latent space

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

- Structures the latent space
- ► Can perform data generation

 $109 \, / \, 126$

A variational auto-encoder can be seen as a latent variable model:

 $p(X,S) = p_{\theta}(X|S)p(S)$

- Cannot be used directly to maximize p(X).
- Questions:
 - 1. What is $p_{\theta}(X|S)$ called ?
 - The decoder
 - 2. What is p(S) called ?
 - The latent distribution, or the prior.
 - 3. Another quantity is required (for inference), which one ?
 - The posterior (i.e. the encoder) p(S|X)
- The true encoder is unknown and so we approximate it with a distribution that we parameterize $q_{\phi}(S|X)$.
- We learn its parameters such that $D_{KL}(q_{\phi}(S|X)||p(S|X))$ is minimized.

• Remember how to deal with the minimization of $D_{KL}(q_{\phi}(S|X)||p(S|X))$?

$$D_{KL}(q_{\phi}(S|X)||p(S|X)) = \sum_{s} q_{\phi}(S = s|X) \ln \frac{q_{\phi}(S = s|X)}{p(S = s|X)}$$

= $\sum_{s} q_{\phi}(S = s|X) \ln \frac{q_{\phi}(S = s|X)p(X)}{p(X|S)p(S)}$
= $\sum_{s} q_{\phi}(S = s|X) \left[\ln \frac{1}{p_{\theta}(X|S)} + \ln \frac{q_{\phi}(S = s|X)}{p(S)} + \ln p(X) \right]$
$$\ln p(X) = \underbrace{D_{KL}(q_{\phi}(S|X)||p(S|X))}_{\geq 0} \underbrace{-D_{KL}[q_{\phi}(S|X)||p(S)] + E_{q_{\phi}(S|X)}[\ln p_{\theta}(X|S)]}_{\mathcal{L}_{ELBO}(q)}$$

 $\ln p(X) \geq \mathcal{L}_{ELBO}(q)$

And so we end up maximizing

$$\mathcal{L}_{ELBO}(q) = -\underbrace{\mathcal{D}_{KL}[q_{\phi}(S|X)||p(S)]}_{(1)} + \underbrace{\mathcal{E}_{q_{\phi}(S|X)}[\ln p_{\theta}(X|S)]}_{(2)}$$

- Question: What is (2) ? The reconstruction loss.
- The computation of this term requires sampling:
 - but leads variance issues when differentiating the expectation directly.
- ▶ We resort to something called the reparameterization trick to compute the expectation

 \blacktriangleright Given a data point $\mathbf{x} \in \mathbb{R}^d$, the reparameterization trick is used

$$\mathbf{s} \sim q_{\phi}(S|X=\mathbf{x}) \Leftrightarrow \mathbf{s} = g_{\phi}(\epsilon;\mathbf{x}), \quad \epsilon \sim p(\epsilon)$$

• Question: example in \mathbb{R}^D with $p(\epsilon) = \mathcal{N}(\epsilon; \mathbf{0}, I_D)$:

$$egin{aligned} \mathbf{s} &\sim \mathcal{N}(\mathbf{s}; oldsymbol{\mu}, \Sigma) \Leftrightarrow \ \mathbf{s} &= oldsymbol{\mu} + A oldsymbol{\epsilon}, \quad oldsymbol{\epsilon} \sim p(oldsymbol{\epsilon}), \quad A A^T = \Sigma \end{aligned}$$

The reconstruction loss is then approximated

$$\begin{split} E_{q_{\phi}(S|X=\mathbf{x})}[\ln p_{\theta}(X|S)] &= E_{p(\epsilon)}\left[\ln p_{\theta}(X|S=g_{\phi}(\epsilon;\mathbf{x}))\right] \\ &\approx \frac{1}{L}\sum_{l=1}^{L}\ln p_{\theta}(X|S=g_{\phi}(\epsilon^{(l)};\mathbf{x})) \end{split}$$

with $\epsilon^{(l)} \sim p(\epsilon)$. EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

113 / 126

- The reconstruction loss is $E_{q_{\phi}(S|X=\mathbf{x})}[\ln p_{\theta}(X|S)].$
- Question: How does this relate to e.g. the mean squared error ?
 - The decoder is formulated with the reparameterization trick:

for $\mathbf{s} \sim q_{\phi} \left(S | X = \mathbf{x} \right)$ we compute $\hat{\mathbf{x}} = h_{\theta}(\mathbf{s})$ for some function h_{θ} ,

• The loss function is a Gaussian centered on the input $\mathbf{x} \in \mathbb{R}^d$

i.e.
$$p_{\theta}(X = \hat{\mathbf{x}} | S = \mathbf{s}) = \mathcal{N}(h_{\theta}(\mathbf{s}); \mathbf{x}, \sigma^2 I_d)$$

Finally, the reconstruction loss:

$$E_{q_{\phi}(S|X=\mathbf{x})}[\ln p(X|S)] \approx \frac{1}{L} \sum_{l=1}^{L} \left[\operatorname{cst} - \frac{1}{2\sigma^{2}} (h_{\theta}(\mathbf{s}^{(l)}) - \mathbf{x})^{T} (h_{\theta}(\mathbf{s}^{(l)}) - \mathbf{x}) \right],$$

where $\mathbf{s}^{(l)} \sim q_{\phi}(S|X = \mathbf{x})$.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.

114 / 126

Recall, we are maximizing

$$\mathcal{L}_{ELBO}(q) = -\underbrace{\mathcal{D}_{KL}[q_{\phi}(S|X)||p(S)]}_{(1)} + \underbrace{\mathcal{E}_{q_{\phi}(S|X)}[\ln p_{\theta}(X|S)]}_{(2)}$$

- We spoke about the reconstruction term in (2).
- Question: What about (1) ? What do we need to compute it ?
 - ► To specify the prior and variational distribution.
- The form of the variational distribution will depend on the prior

- ▶ The original paper proposes a Gaussian prior, e.g. in \mathbb{R}^D : $p(S) = \mathcal{N}(\mathbf{0}, I_D)$
- In that case the encoder of a data point $\mathbf{x} \in \mathbb{R}^d$, is also a Gaussian:

$$q_{\phi}(S|X=\mathbf{x}) = \mathcal{N}(S; \mu_{\phi_1}(\mathbf{x}), \sigma^2_{\phi_2}(\mathbf{x})I_D),$$

where $\phi = \{\phi_1, \phi_2\}$ are parameters of neural networks for instance.

• Question: What is the expression of $D_{KL}[q_{\phi}(S|X = \mathbf{x})||p(S)]$?

$$D_{\mathcal{KL}}[q_{\phi}(S|X=\mathbf{x})||p(S)] = rac{1}{2}\sum_{i=1}^{D}(1+\ln\sigma_{i}^{2}-\mu_{i}^{2}-\sigma_{i}^{2}),$$

where μ_i is the *i*-th component of $\mu_{\phi_1}(\mathbf{x}) \in \mathbb{R}^D$.

Prior Distributions

More priors

What other prior can be used ? Gaussian mixture models ! e.g. https://arxiv.org/pdf/1611.02648

► Model:

$$\Big\{p_{\beta,\theta}(\mathsf{x},\mathsf{s},\mathsf{w},\mathsf{z})=p_{\theta}(\mathsf{x}\mid\mathsf{s})p_{\beta}(\mathsf{s}\mid\mathsf{w},\mathsf{z})p(\mathsf{w})\,p(\mathsf{z})$$

Prior:

$$\begin{cases} \mathbf{w} \sim \mathcal{N}(0, \mathbf{I}) \\ \mathbf{z} \sim \mathsf{Mult}(\boldsymbol{\pi}) \\ \mathbf{s} \mid \mathbf{z}, \mathbf{w} \sim \prod_{k=1}^{K} \mathcal{N}\left(\mu_{z_k}(\mathbf{w}; \boldsymbol{\beta}), \operatorname{diag}\left(\sigma_{z_k}^2(\mathbf{w}; \boldsymbol{\beta})\right)\right)^{z_k} \end{cases}$$

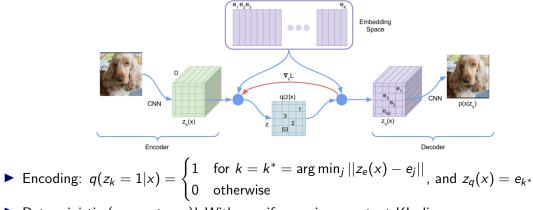
Decoder:

$$\Big\{\mathbf{x} \mid \mathbf{s} \sim \mathcal{N}\left(\mu(\mathbf{s}; \boldsymbol{\theta}), \, \text{diag}\left(\sigma^2(\mathbf{s}; \boldsymbol{\theta})\right)\right) \quad \text{or} \quad \mathcal{B}\left(\mu(\mathbf{s}; \boldsymbol{\theta})\right)$$

• \mathcal{L}_{ELBO} :

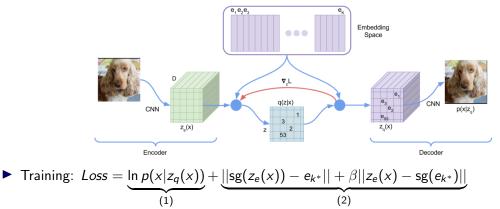
$$\begin{aligned} E_q \left[\frac{p_{\beta,\theta}(\mathbf{x}, \mathbf{s}, \mathbf{w}, \mathbf{z})}{q(\mathbf{s}|\mathbf{x}, \mathbf{w}, \mathbf{z})} \right] \\ &= \mathbb{E}_{q(\mathbf{s}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{s}) \right] - \mathbb{E}_{q(\mathbf{w}|\mathbf{x})\rho(\mathbf{z}|\mathbf{s}, \mathbf{w})} \left[\mathrm{KL} \left(q_{\phi_x}(\mathbf{s}|\mathbf{x}) \parallel p_{\beta}(\mathbf{s}|\mathbf{w}, \mathbf{z}) \right) \right] \\ &- \mathrm{KL} \left(q_{\phi_w}(\mathbf{w}|\mathbf{x}) \parallel p(\mathbf{w}) \right) - \mathbb{E}_{q(\mathbf{s}|\mathbf{x})q(\mathbf{w}|\mathbf{x})} \left[\mathrm{KL} \left(p_{\beta}(\mathbf{z}|\mathbf{s}, \mathbf{w}) \parallel p(\mathbf{z}) \right) \right]. \end{aligned}$$

What other prior can be used ? Discrete ! e.g. https://arxiv.org/pdf/1711.00937



Deterministic (zero entropy)! With a uniform prior, constant KL divergence

▶ What other prior can be used ? Discrete ? e.g. https://arxiv.org/pdf/1711.00937



- ▶ sg(.) is identity during forward, and cuts gradient during backward.
- ▶ (2) ensures that embeddings and encodings get closer during training.

- https://towardsdatascience.com/ difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c
- Kingma et al. paper http://arxiv.org/abs/1312.6114
- Deep unsupervised clustering https://arxiv.org/pdf/1611.02648
- VQ-VAE https://arxiv.org/pdf/1711.00937
- More in details: http://arxiv.org/pdf/2410.06424

Lecture 8: Overall Recap

- 1. What is an HMM ?
 - 1.1 A statistical model for timeseries. Assuming observations (1) explained with corresponding latent variables modeled with a Markov chain in time, and (2) independent to each other given the corresponding latent variable.
- 2. Why is the EM algorithm required to learn the parameters of a hidden Markov model? $2.1\,$
- 3. In EM, why is an auxiliary function required ?
 - 3.1 Too computationally expensive to compute the evidence.
- 4. In the context of HMMs, what is $p(\underline{\mathbf{x}})$?
 - 4.1 Likelihood function of an observed sequence $\underline{\mathbf{x}}$.
- 5. In the context of HMMs, what is $p(\underline{\mathbf{x}}, \underline{\mathbf{s}})$ called ?
 - $5.1\,$ The joint distribution of the observation and latent variables.
- 6. In the context of HMMs, how are $p(\underline{\mathbf{x}})$ and $p(\underline{\mathbf{x}}, \underline{\mathbf{s}})$ related ?
 - 6.1 The Joint distribution of the observation and latent variables.
- 7. In the context of HMMs, what is $p(\mathbf{s}_t | \mathbf{x})$ for a time t.

7.1 The posterior distribution of the latent variable at time t given the observed data.

- 8. What is the difference between Bayesian and frequentists statistics ? 8.1
- 9. What is the joint density function $f_{X_1,X_2}(x_1,x_2)$ of independent random variables X_1, X_2 ? 9.1
- 10. What is the expected value of a random variable with a mixture of gaussian probability model ?

10.1

- 11. What is the preferred model for a feature vector ?
 - 11.1 Random variables page 15
- 12. Write suppose three events A, B, C, write Bayes rule for the joint distribution p(A, B|C). 12.1
- 13. For binary classification, what decision rule should you use when there are much more data in one class ?

13.1

- 14. In classification, what is a decision function ?
 - 14.1 returns a class index from data
- 15. What is are discriminant functions ?
 - 15.1 functions returning a real score for each class
- 16. What is a general form for a generative statistical model with latent variables 16.1 p(X,S)=p(X,S)p(S)
- 17. What do we call the likelihood of data ?

17.1

- 18. What's the difference between a fine-state and an infinite duration HMM ? 18.1
- 19. What parameter estimation paradigm have we seen in the course ?
 - 19.1 Maximum likelihood and Bayesian learning
- 20. How can the parameters of a Markov chain be expressed ? 20.1
- 21. What is a left-right HMM ?

21.1

- 22. What does it mean to factorize a joint distribution ? 22.1
- 23. What does the forward algorithm do ? 23.1
- 24. What does the backward algorithm do ? 24.1
- 25. What does the Viterbi algorithm do ?

25.1

- 26. What is the difference between the Baum-Welch and the EM algorithm 26.1
- 27. Describe the EM algorithm

27.1

28. What are the convergence guarantees of the EM algorithm ?

28.1

- 29. What is the difference between a subjective and objective uninformative prior ? 29.1 the same up to a change of variable
- 30. What is the Jeffreys prior ?

30.1

- 31. What is a conjugate probability distribution ? 31.1
- 32. What is a conjugate probability distribution ? 32.1
- 33. What is variational inference ?

33.1

34. What is a conjugate probability distribution ?

34.1