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Lecture Topic Time Slide
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Lecture 1 HMMs
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What is a hidden Markov model ?

A parametric statistical model

▶ For doing what?
▶ Modeling an observed data sequence with the assumption that it is related to another

unobserved (latent) data sequence.

▶ With parameter set λ, x = [x1, . . . , xT ] the observed data, s = [s1, . . . , sT ] the
un-observed data, the joint model is written:

p(x, s|λ) (1)

▶ The model does not tell us how to write the likelihood p(x|λ) of a data sequence x, we
have to use the joint distribution:

p(x|λ) =
∫

p(x, s|λ)ds (2)
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What is a hidden Markov model ?

A parametric statistical model

A HMM makes the following assumption about the relation between the data and the latent:

1. the observed sample at time t depends only on the latent variable at time t.

2. the latent variable at time t depends only on the latent variable at time t − 1.

Questions: How do you draw this ? Write the distribution p(x, s) according to your drawing

st−1 st st+1

xt−1 xt xt+1

p(x, s) = p(s1)p(x1|s1)
T∏
t=2

p(xt |st)p(st |st−1)
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What is a hidden Markov model ?

A parametric statistical model

p(x, s|λ) = p(s1|λ)p(x1|s1, λ)
T∏
t=2

p(xt |st , λ)p(st |st−1, λ) (3)

▶ The parameters of the HMM describe how the latent variable is related to the observed
data. We choose the parameter space, and learn the best values in that space.

▶ Here, we treat only HMM with a finite latent space, i.e. the variables St can take N ∈ N∗

values
▶ for t = 1 we write: q = [p(S1 = i)]i∈[N]
▶ for t > 1 the kernel p(St |St−1) can be written as a matrix: A = [p(St = j |St−1 = i)]i,j∈[N]
▶ ∀t we write B the parameters of p(xt |st)

▶ HMMs defined over sequences of finite length (what we have in practice) are called finite
duration. I won’t spend time explaining the details of this, refer to 5.3 in the book.
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What is a hidden Markov model ?

A parametric statistical model

p(x, s|λ) = p(s1|λ)p(x1|s1, λ)
T∏
t=2

p(xt |st , λ)p(st |st−1, λ)

Question: How do you write p(S2) ? What about, ∀t ∈ [T ], pt = p(St) ?

▶ ∀j ∈ [N] p(S2 = j) =
∑N

i=1 p(S2 = j |S1 = i)p(S1 = i), so p(S2) = ATq

▶ ∀t ∈ [T ] pt = ATpt−1
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8 / 126

EM: Latent variable models
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EM: Latent variable models

Let’s forget about time series for a minute, assume data in 2d.

Bishop 2006 Figure 9.1

▶ Do you recognize this algorithm ?
▶ it’s K-means, a clustering method

▶ Is this a probabilistic method ?
▶ No it’s a hard cluster assignment

method, BUT there exists an
equivalent probabilistic K-means

▶ Are there latent variables ?
▶ yes, the cluster means !

▶ What are the parameters ?
▶ The cluster means too
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EM: Latent variable models

Why choose a latent variable model ?

▶ Latent variable models are useful when there is a reason to assume an underlying
structure in the data (In our case a discrete structure)

0 25 50 75 100 125 150 175 200
Time (samples)

1

2

3

Validation inference with in = tr = 0.01

Training data
E[x]
s(1)

t  (true)
q [s(1)

t, 1]
s(2)

t  (true)
q [s(2)

t, 1]
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EM: Learning Latent variable models

Likelihood maximization ?
▶ once the structure is specified (the parameter space is chosen), we need to learn the

parameters that maximize the likelihood of the data under that model:

λ∗ = argmax
λ

p(x|λ) = argmax
λ

ln p(x|λ) (4)

▶ In other words, find the model with the set of parameters that is the most likely to have
generated the data.

▶ Solving λ∗ directly is intractable,
▶ We would have to integrate/sum over the NT possible combinations of state sequences:

▶ Therefore we resort to an iterative scheme to find a locally optimal λ
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EM: Learning Latent variable models

Intractable you say ? Let’s look at a GMM example

▶ Given a training set {x(1), . . . , x(N)}, and a GMM x(i) ∼ p(x|λ), λ = {(µj , σ
2
j ,wj)}Kj=1

▶ The log-likelihood is (assuming iid)

L(λ) =
N∑
i=1

ln p(x(i)|λ) =
N∑
i=1

ln

 K∑
j=1

p(x(i),S(i) = j |λ)


=

N∑
i=1

ln

 K∑
j=1

p(S(i) = j) · p(x(i)|S(i) = j)


=

N∑
i=1

ln

 K∑
j=1

wj ·
1√
2πσ2

j

exp

(
−
(x(i) − µj)

2

2σ2
j

)
▶ Solve for λ by setting partial derivatives to 0? No closed-form solution.
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EM: Learning Latent variable models

Intractable you say ? Let’s look at a Gaussian Mixture model example

▶ Good news: The optimization is easy if we assume that we know the variable S(i), =⇒
it becomes a matter of estimating the parameter of single Gaussians.

▶ Thus we resort to an iterative scheme:

1. first find the expected latent variables
2. then maximize the expected likelihood wrt the parameters

▶ EM: Expectation + Maximization

1. Assume some parameter λ′, get the distribution of the latent variable assuming these
parameters: p(S|X, λ′).

2. Maximize Q(λ, λ′) = Ep(S|X,λ′)[ln p(X,S|λ)] wrt λ.
▶ Price to pay :

▶ In general this iterative scheme does not converge to a global optima, but only to a local
optima
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EM: Learning Latent variable models

Let’s spend some time on the Q function

▶ In EM what we are really doing is optimizing the Q function, instead of optimizing the
log-likelihood directly.

▶ how do we ensure

Q(λ, λ′) > Q(λ′, λ′) =⇒ ln p(x|λ) > ln p(x|λ′) (5)

▶ Showing
ln p(x|λ)− ln p(x|λ′) ≥ Q(λ, λ′)− Q(λ′, λ′) (6)

is sufficient, why ?

▶ because then Q(λ, λ′)− Q(λ′, λ′) > 0 =⇒ ln p(x|λ)− ln p(x|λ′) > 0
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EM: Learning Latent variable models

Let’s spend some time on the Q function

ln p[x | λ]− ln p[x | λ′] = ln
p[x | λ]
p[x | λ′]

= ln
∑

(i1...iT )

p[S = (i1 . . . iT ), x | λ]
p[x | λ′]

= ln
∑

(i1...iT )

p[S = (i1 . . . iT ) | x, λ′]

p[S = (i1 . . . iT ) | x, λ′]︸ ︷︷ ︸
1

·p[S = (i1 . . . iT ), x | λ]
p[x | λ′]

= ln
∑

(i1...iT )

p[S = (i1 . . . iT ) | x, λ′]
p[S = (i1 . . . iT ), x | λ]
p[S = (i1 . . . iT ), x | λ′]

= lnE

[
p[S, x | λ]
p[S, x | λ′]

∣∣∣∣∣x, λ′

]
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EM: Learning Latent variable models

Let’s spend some time on the Q function

ln p[x | λ]− ln p[x | λ′] = · · · = lnE

[
p[S, x | λ]
p[S, x | λ′]

∣∣∣∣∣x, λ′

]
(Jensen inequality)

≥ E

[
ln

p[S, x | λ]
p[S, x | λ′]

∣∣∣∣∣x, λ′

]
= E

[
ln p[S, x | λ] | x, λ′]− E

[
ln p[S, x | λ′] | x, λ′]

= Q(λ, λ′)− Q(λ′, λ′)

Recall Jensen inequality in probability theory

φ(E [X ]) ≤ E [φ(X )] for a convex function φ
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EM

Summary

▶ A HMM is a timeseries parametric statistical model with latent variables

▶ Assumptions are made on the latent variable model & the relationship between the
observed and the latent variable

▶ Learning the parameters from data is not tractable the usual way, i.e. finding global
optimum with derivatives, is not feasible

▶ We prove another scheme to learn parameters

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with timeseries

Example with timeseries

You observe data x = [x1, . . . , xT ], and you know this model:

x0 = 0

xt = Stλxt−1 +Wt , ∀t = 1, . . . ,T ,

where λ ∈ R, ∀t ∈ [T ],St ∼ U({−1,+1}),Wt ∼ N (0, σ2) is white noise.
Questions:

1. Draw the relationships between the random variables.

2. Write p(X,S|λ).
3. Write p(S|X, λ) for the expectation step

4. Write Q(λ, λ′) = Ep(S|X,λ′)[ln p(S,X|λ)] so that you can perform the maximization step.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with timeseries

Joint distribution

p (S = (i1 . . . iT ), x | λ) =
T∏
t=1

p (St = it , xt | xt−1, λ)

where ∀t ∈ [T ]

p (St = it , xt | xt−1, λ) = p (St = it) p (xt | xt−1,St = it , λ)

p (St = +1, xt | xt−1, λ) =
1

2

1

σ
√
2π

e−
(xt−(+1)λxt−1)

2

2σ2

p (St = −1, xt | xt−1, λ) =
1

2

1

σ
√
2π

e−
(xt−(−1)λxt−1)

2

2σ2
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EM
Example with timeseries

Posterior distribution

γ+,t = p [St = +1 | xt , xt−1, λ] =
p(xt |St = +1, xt−1, λ)p(St = +1|xt−1, λ)

p(xt |xt−1, λ)

=
e−

(xt−λxt−1)
2

2σ2

e−
(xt−λxt−1)

2

2σ2 + e−
(xt+λxt−1)

2

2σ2

=
e

λxt xt−1
σ2

e
λxt xt−1

σ2 + e−
λxt xt−1

σ2

γ−,t = 1− γ+,t

=
e−

λxt xt−1
σ2

e
λxt xt−1

σ2 + e−
λxt xt−1

σ2
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EM
Example with timeseries

Q function

Q(λ, λ′) =
∑
i1

· · ·
∑
iT

P
[
S = (i1 . . . iT ) | x, λ′] ln p [S = (i1 . . . iT ), x | λ]

=
∑
i1

· · ·
∑
iT

P
[
S = (i1 . . . iT ) | x, λ′] T∑

t=1

lnP [St = it , xt | xt−1, λ]

=
T∑
t=1

∑
it

P
[
St = it | xt , xt−1, λ

′] lnP [St = it , xt | xt−1, λ]

=
T∑
t=1

[
γ+,t

−(xt − λxt−1)
2

2σ2
+ γ−,t

−(xt + λxt−1)
2

2σ2
+ Cst

]
,

where Cst does not depend on λ and so will not intervene in the maximization.
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EM
Example with timeseries

Q function maximization

0 =
∂Q(λ, λ′)

∂λ

∣∣∣∣
λ∗

=
T∑
t=1

γ+,t
(xt − λ∗xt−1)xt−1

σ2
− γ−,t

(xt + λ∗xt−1)xt−1

σ2

=
T∑
t=1

(γ+,t − γ−,t)
xtxt−1

σ2
− (γ+,t + γ−,t)︸ ︷︷ ︸

1

λ∗x2t−1

σ2

=
T∑
t=2

(γ+,t − γ−,t)
xtxt−1

σ2
−

λ∗x2t−1

σ2

Note that γ+,t − γ−,t = tanh
(
λ′xtxt−1

σ2

)

λ∗ =

∑T
t=2 tanh(

λ′xtxt−1

σ2 )xtxt−1∑
t=2 x

2
t−1EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

K-means
▶ Suppose N ∈ N∗ data points xn ∈ Rd for n = 1, · · · ,N.

▶ Suppose we can measure distances in Rd with a bivariate function d , e.g.
d(xn, xn′) = ||xn − xn′ ||2.

▶ We want to assign all our data points to one of K ∈ N∗ clusters, characterized by their
means µk ∈ Rd for k = 1, · · · ,K .

▶ We use the notation rnk ∈ {0, 1}, where rnk = 1 and rnk ′ = 0 for k ′ ̸= k if point n is
assigned to the k-th cluster.

▶ The goal of K -means clustering is to

1. learn the means of the each cluster and
2. assign every point in the data set to one of the clusters.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

Optimization problem

The goal is to find {rnk} and {µk} which minimize

J({rnk}, {µk}) =
N∑

n=1

K∑
k=1

rnk ||xn − µk ||22, (7)

Example with K-means & GMMs: Cluster assignment

At iteration i , what are the optimal values for r
(i)
nk according to the current estimate µk ?

r
(i)
nk =

{
1 if k = argminj ||xn − µ

(i−1)
j ||22

0 otherwise.
(8)
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EM
Example with K-means & GMMs

Optimization problem

How can you optimize µ
(i)
k based on the new estimates for r

(i)
nk ?

Derive and set to 0:
∂J(r

(i)
nk ,µk)

∂µk

∣∣∣∣∣
µ

(i)
k

= 0

=⇒ 2
N∑

n=1

r
(i)
nk (xn − µ

(i)
k ) = 0

µ
(i)
k =

∑
n r

(i)
nk xn∑

n r
(i)
nk

(9)

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

Probabilistic K-means
Again, denote X = {xn}Nn=1 the set of observed training data.

▶ Probabilistic interpretation of K -means: defining the clusters in terms of distributions
rather than simply by there means.

▶ We will aim at maximizing the likelihood of the dataset X wrt to a mixture of Gaussian
model:

ln p(X|λ) =
N∑

n=1

ln

[
K∑

k=1

πkN (xn|µk ,Σk)

]
, (10)

where λ = π,µ,Σ

▶ And assuming initial values for λ.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

Derivatives wrt µk must be 0:

∂ ln p(X|π,µ,Σ)

∂µk

∣∣∣∣
µ⋆

k

= 0

=⇒ 0 =
N∑

n=1

∂πkN (xn|µk ,Σk )
∂µk∑K

j=1 πjN (xn|µj ,Σj)
, where we derived ln(.) wrt µk

Next, we derive the numerator (using equation (86)) from the Matrix Cookbook)

∂πkN (xn|µk ,Σk)

∂µk

= πkN (xn|µk ,Σk)Σ
−1(xn − µk),

Denoting γ(znk) =
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

∈ R, we get: 0 =
N∑

n=1

γ(znk)Σ
−1(xn − µ∗

k)

Finally :

µ∗
k =

1

Nk

N∑
n=1

γ(znk)xn, with Nk =
N∑

n=1

γ(znk)

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

Derivatives wrt Σk must be 0:

∂ ln p(X|π,µ,Σ)

∂Σk

∣∣∣∣
Σ⋆

k

= 0 =⇒

Σ⋆
k =

1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T

Details for the derivation at
https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/reading/gauss.pdf

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

The mixture parameter πk has the additional constraint that
∑K

k=1 πk = 1, thus we introduce
a Lagrangian multiplier and maximize wrt πk and β, the quantity:

l(πk , β) = ln p(X|π,µ,Σ)− β

(
1−

K∑
k=1

πk

)
Deriving wrt πk and setting to 0 gives

0 =
N∑

n=1

N (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

+ β

Multiplying by πk summing over k and using the constraint :

β = −N, πk =
Nk

N
,

where Nk =
∑

n γ(znk) and N =
∑

k Nk .

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

The EM for Gaussian Mixtures p438 Bishop 2006:

1. Initialize the parameters

2. Evaluate the responsibilities γ(znk)

3. Re-estimate the parameters using the current responsibilities

4. Check convergence

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

Reducing GMM to K-means

▶ How should you define the GMM so that clustering reduces to K-means ?

▶ Assume Σk = ϵI, this leads to

γ(znk) =
πk exp(−||xn − µk ||22/2ϵ)∑
j πj exp(−||xn − µj ||22/2ϵ)

.

▶ If we denote k⋆ the cluster mean that is closer to point n,

▶ then for k ̸= k⋆, γ(znk) → 0 and γ(znk⋆) → 1 when ϵ → 0,

▶ in turn leading to a hard assignment to cluster k⋆ for point n.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM
Example with K-means & GMMs

Summary

▶ The procedure of EM is:

1. Select initial parameters λ′

2. Write Q(λ, λ′) = Ep(S|X,λ′)[ln p(S,X|λ)].
3. Maximize Q wrt λ.

▶ We saw EM in practice for a timeseries model.

▶ We revisited K-means as a particular case of clustering with GMMs.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Lecture 2 Baum-Welch
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EM + HMM = Baum-Welch
The Q function, i.e the expectation step

Back to HMMs with N states

p(x, s|λ) = p(s1|λ)p(x1|s1, λ)
T∏
t=2

p(xt |st , λ)p(st |st−1, λ),

with λ = {q,A,B}.

The Q function

Q(λ, λ′) =
N∑
i1

· · ·
N∑
iT

p(s = (i1, . . . , iT )|x, λ′) ln p(x, s = (i1, . . . , iT ), λ)

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM + HMM = Baum-Welch
The Q function, i.e the expectation step

The Q function

Q(λ, λ′) =
N∑
i1

· · ·
N∑
iT

p(s = (i1, . . . , iT )|x, λ′)[ln p(s1|λ)+
T∑
t=2

ln p(st |st−1, λ)+
T∑
t=1

ln p(xt |st , λ)]

We look at the different parameters independently:

Q1(λ, λ
′) =

N∑
i1

· · ·
N∑
iT

p(s = (i1, . . . , iT )|x, λ′) ln p(s1|λ)

Q2(λ, λ
′) =

N∑
i1

· · ·
N∑
iT

p(s = (i1, . . . , iT )|x, λ′)

[
T∑
t=2

p(st |st−1, λ)

]

Q3(λ, λ
′) =

N∑
i1

· · ·
N∑
iT

p(s = (i1, . . . , iT )|x, λ′)

[
T∑
t=1

ln p(xt |st , λ)

]
EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM + HMM = Baum-Welch
The Q function, i.e the expectation step

Trick
An important trick in the calculation is to marginalize the posterior with everything expect the
time index in the term from the joint distribution. E.g. Q1:

p(s = (i1, . . . , iT )|x, λ′) = p(s1 = i1|x, λ′)p(s2, . . . , sT = (i2, . . . , iT )|x, s1 = i1, λ
′)

Q1(λ, λ
′) =

N∑
i1=1

· · ·
N∑

iT=1

p(s = (i1, . . . , iT )|x, λ′) ln p(s1|λ)

Q1(λ, λ
′) =

N∑
i1=1

p(s1 = i1|x, λ′) ln p(s1|λ) ·
N∑

i2=1

. . . ,

N∑
iT=1

p(s2, . . . , sT = (i2, . . . , iT )|x, s1 = i1, λ
′)︸ ︷︷ ︸

=1

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM + HMM = Baum-Welch
The Q function, i.e the expectation step

Similarly in Q2

Q2(λ, λ
′) =

N∑
i1=1

· · ·
N∑

iT=1

p(s = (i1, . . . , iT )|x, λ′)

[
T∑
t=2

ln p(st |st−1, λ)

]

=
T∑
t=2

N∑
it−1

N∑
it

p(st−1 = it−1, st = it |x, λ′) ln p(st |st−1, λ)

·

 ∑
ik ̸=t−1,t

p(∩k ̸=t−1,t(sk = ik)|x, λ′)


︸ ︷︷ ︸

=1

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM + HMM = Baum-Welch
The Q function, i.e the expectation step

Similarly in Q3:

Q3(λ, λ
′) =

N∑
i1=1

· · ·
N∑

iT=1

p(s = (i1, . . . , iT )|x, λ′)

[
T∑
t=1

ln p(xt |st , λ)

]

=
T∑
t=1

N∑
it=1

p(st = it |x, λ′) ln p(xt |st , λ) ·

 ∑
(ik ̸=t)k

p(∩k ̸=t(sk = ik)|x, λ′)


︸ ︷︷ ︸

=1
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EM + HMM = Baum-Welch
The Q function, i.e the expectation step

Finally, if ∀i , t ∈ [N]× [T ] γi ,t = p(st = i |x, λ′), and
∀(i , j) ∈ [N]2 ξi ,j ,t = p(st−1 = i , st = j |λ′)

Q1(λ, λ
′) =

N∑
i=1

γi ,1 ln p(s1 = i |λ)

Q2(λ, λ
′) =

T∑
t=2

N∑
i=1

N∑
j=1

ξi ,j ,t ln p(st = j |st−1 = i , λ)

Q3(λ, λ
′) =

T∑
t=1

N∑
i=1

γi ,t ln p(xt |st = i , λ)
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EM + HMM = Baum-Welch
The Q function, i.e the expectation step

∀i , j , t ∈ [N]× [N]× [T ], how to calculate γi ,t = p(st = i |x, λ′), and
ξi ,j ,t = p(st−1 = i , st = j |x, λ′) ?

▶ See chap 5 !
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q1

Q1(q, λ
′) =

N∑
i=1

γi ,1 ln qi

Similar to updating the mixture weights in a GMM !

∀i ∈ [N] q⋆i =
γi ,1∑N
j=1 γj ,1
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q2

Q2(A, λ
′) =

T∑
t=2

N∑
i=1

N∑
j=1

ξi ,j ,t ln ai ,j

There are N additional constraints

∀i ∈ [N]
N∑
j=1

ai ,j = 1

We define Lagrange multipliers: ∀i ∈ [N] νi , the criteria becomes:

∀i , j ∈ [N]2 l(νi , ai ,j , λ
′) = Q2(A, λ

′) + νi (1−
N∑

k=1

ai ,k)
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q2

Solving for ai ,j .
∂l(νi , ai ,j , λ

′)

∂ai ,j

∣∣∣∣
a∗i,j

= 0 =⇒

N∑
t=2

ξi ,j ,t
ai ,j

− νi = 0

With the constraint: νi =
N∑

k=1

T∑
t=2

ξi ,k,t

Then: a⋆i ,j =
1

νi

T∑
t=2

ξi ,j ,t
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

Q3(λ, λ
′) =

T∑
t=1

N∑
i=1

γi ,t ln p(xt |st = i , λ)

We still have not spoken about the emission distributions !
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

Q3(λ, λ
′) =

T∑
t=1

N∑
i=1

γi ,t ln p(xt |st = i , λ)

▶ p(xt |st = i , λ) are the emission density functions

▶ it should be possible to differentiate the density function wrt its parameters
▶ We are going to assume that ∀i , t ∈ [N]× [T ] the emission distributions are either

1. Discrete: p(xt |st = i , λ) = [bi,1, . . . , bi,M ], with
∑M

m=1 bi,m = 1.

2. GMM: p(xt |st = i , λ) =
∑M

m=1 wimN (xt ;µim,Cim), with
∑M

m=1 wi,m = 1
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

Discrete case: Xt ∈ {α1, . . . , αM}. It is useful to define auxiliary random variables when
dealing with discrete distributions, i.e. if we observe Xt = xt = αm, we write Zt = m, then:

bi ,m = p(Xt = αm|St = st , λ) = p(Zt = m|St = i , λ) =
M∑
k=1

1(zt = k)p(Zt = k |St = i , λ)

Q3(λ, λ
′) =

T∑
t=1

N∑
i=1

γi ,t ln
M∑
k=1

1(zt = k)p(Zt = k |St = i , λ)

Q3(λ, λ
′) =

T∑
t=1

N∑
i=1

γi ,t ln
M∑
k=1

1(zt = k)bi ,k
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

Q3(λ, λ
′) =

T∑
t=1

N∑
i=1

γi ,t ln
M∑
k=1

1(zt = k)bi ,k

The method is similar to optimizing Q1. We take N Lagrange multipliers νi .

∀i ,m ∈ [N]× [T ]
∂

∂bi ,m

[
Q3(λ, λ

′) + νi (1−
M∑
k=1

bi ,k)

]∣∣∣∣∣
b∗i,m

= 0

=⇒ 0 =
T∑
t=1

γi ,t
b∗i ,m

1(zt = m)− νi

Which gives: b∗i ,m =
1

νi

T∑
t=1

γi ,t1(zt = m), with νi =
M∑
k=1

T∑
t=1

γi ,t1(zt = k)

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

GMM case: We define a random variable to help solve the optimization problem. We augment
the latent variable space with Ut ∈ {1, . . . ,M} which indicates which mixture component is
chosen at time t. The joint distribution is now written:

p(x, s,u|λ) = p(s1|λ)p(x1,u1|s1, λ)
T∏
t=2

p(xt ,ut |st , λ)p(st |st−1, λ)

We use the new latent variable as follows, ∀i , t,m ∈ [N]× [T ]× [M]:

p(xt ,Ut = m|St = i) = p(xt |St = i ,Ut = m)p(Ut = m|St = i)

where p(xt |St = i ,Ut = m) = N (xt ;µi ,m,Ci ,m) with mixture weight
wi ,m = p(Ut = m|St = i).
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

We also define ∀m, i , t ∈ [M]× [N]× [T ]

γi ,m,t = p(St = i ,Ut = m|x, λ′) Question? How is this related to γi ,t ?

= p(Ut = m|x,St = i , λ′) p(St = i |x, λ′)︸ ︷︷ ︸
γi,t

= γi ,t
p(Ut = m, xt |St = i , xt′ ̸=t , λ

′)

p(xt |St = i , λ′)

= γi ,t
p(Ut = m, xt |St = i , λ′)

p(xt |St = i , λ′)

= γi ,t
wimN (xt ;µi ,m,Ci ,m)∑M
k=1 wi ,kN (xt ;µi ,k ,Ci ,k)
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

GMM case: With our new variable Ut , Q is written:

Q(λ, λ′) =
N∑
i1

· · ·
N∑
iT

M∑
j1

· · ·
M∑
jT

p(S = (i1, . . . , iT ),U = (j1, . . . , jT )|x, λ′)·

ln p(x,S = (i1, . . . , iT ),U = (j1, . . . , jT )|λ)

In particular,

Q3(λ, λ
′) =

T∑
t=1

N∑
it=1

N∑
jt=1

p(St = it ,Ut = jt |x, λ′) ln p(St ,Ut = jt |St = it , λ)

Q3(λ, λ
′) =

T∑
t=1

N∑
it=1

N∑
jt=1

p(St = it ,Ut = jt |x, λ′) ln p(xt |Ut = jt ,St = it , λ)p(Ut = jt |St = it , λ)
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

GMM case: With our new variable Ut , Q3 (with new indices) is written:

Q3(λ, λ
′) =

T∑
t=1

N∑
i=1

M∑
m=1

p(St = i ,Ut = m|x, λ′)︸ ︷︷ ︸
γi,m,t

ln p(xt ,Ut = m|st = i , λ)

=
T∑
t=1

N∑
i=1

M∑
m=1

γi ,m,t (lnwi ,m + lnN (xt ;µi ,m,Ci ,m))

and γi ,m,t = γi ,t
wimN (xt ;µi ,m,Ci ,m)∑M
k=1 wi ,kN (xt ;µi ,k ,Ci ,k)
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EM + HMM = Baum-Welch
The maximization step

Optimizing Q3

The final update is similar to updating a GMM model, ∀i ,m ∈ [N]× [M]:

w∗
im =

∑
t γi ,m,t∑M

k=1

∑
t γi ,m,t

µ∗
im =

∑
t γi ,m,txt∑
t γi ,m,t

C ∗
im =

∑
t γi ,m,t(xt − µ∗

im)(xt − µ∗
im)

T∑
t γi ,m,t
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EM + HMM = Baum-Welch
The maximization step

Summary

We now have all the update rules to iteratively update the Q function !
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Lecture 3 Lagrange multipliers
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Optimization with an equality constraint

Remember the maximization problems that we encounter in the maximization steps of the
Baum-Welch algorithm.
Problem Statement:

Maximize a function f (x , y)
Subject to a constraint g(x , y) = 0

(11)

The method of Lagrange multipliers is a method for solving optimization problems with
equality constraints.
Main theorem: If it exists, a local maximum is where the level curves of f are tangent to the
constraint curve g , i.e. where the gradients of f and g are parallel.
Practically:

▶ Maximizing l(x , y , λ) = f (x , y)− λg(x , y)

▶ By solving for λ and the variables:

{
∇f = λ∇g

g(x , y) = 0

▶ Solves the constrained problem in (1)
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Geometrically

▶ The gradients ∇f and ∇g determine the direction of greatest increase.

▶ At an optimal point, these gradients must be parallel: ∇f = λ∇g .

▶ This ensures that moving along the constraint does not increase or decrease f .

(Source: Wikipedia)
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Analytically

▶ Take a vector space with an inner product (Rd , ⟨., .⟩) and two functions f , g : Rd → R,
such that both are C1 (derivable with continuous derivatives)

▶ Suppose that a local maximum of f exists at a point P = (x∗1 , . . . , x
∗
d ) on the constraint

surface S = {x1, . . . , xd | g(x1, . . . , xd) = 0}.
▶ Let r(t) = (x1(t), . . . , xd(t)) denote a parameterized curve on S, i.e. such that

∀t ∈ R g(r(t)) = 0, and such that r(0) = P.

▶ Let h(t) = f (r(t)) = f (x1(t), . . . , xd(t)), h has a local maximum at t = 0.

▶ The derivative of h is written

h′(t) = ⟨∇f |r(t) , r
′(t)⟩

▶ then what ?
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Analytically
▶ Since P is a local maximum for h(t) = f (r(t)), at t = 0: h′(0) = ⟨∇f |P , r ′(0)⟩ = 0

▶ This is true ∀ r(t), implying ∇f |P is perpendicular to every curves on the surface at P.
Implying ∇f |P is perpendicular to the constraint surface at P, in particular it is parallel
with ∇g |P (which is also perpendicular to the surface).

(Source: Wikipedia)
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An example in R2

(Source: Wikipedia, r =
√

3)

▶ Problem: Maximize a function f (x , y), Subject to
constraint g(x , y) = 0, with

f (x , y) = x2y , g(x , y) = x2 + y2 − r2 = 0

▶ Question: What shape is g ? A circle of radius r

▶ L(x , y , λ) = f (x , y) + λg(x , y) =
x2y + λ(x2 + y2 − r2)

∇x ,y ,λL(x , y , λ) =
(
∂L
∂x

,
∂L
∂y

,
∂L
∂λ

)

∇x ,y ,λL(x , y , λ) = 0 ⇔


2xy + 2λx = 0
x2 + 2λy = 0

x2 + y2 − r2 = 0

⇔


x(y + λ) = 0 (a)
x2 = −2λy (b)
x2 + y2 = r2 (c)
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An example in R2

(Source: Wikipedia, r =
√

3)

▶ f (x , y) = x2y , g(x , y) = x2 + y2 − r2 = 0

. . . ⇔


x(y + λ) = 0 (a)
x2 = −2λy (b)
x2 + y2 = r2 (c)

▶ (a) =⇒ x = 0 or λ = −y
▶ x = 0 =⇒ y = ±r (c) and thus λ = 0 (b)
▶ λ = −y =⇒ x = ±y

√
2 (b), y = ± r√

3
(c)

▶ 6 possible critical points for L: (0, r , 0), (0,−r , 0);

(r
√

2
3 ,

r√
3
,− r√

3
), (r

√
2
3 ,−

r√
3
, r√

3
);

(−r
√

2
3 ,

r√
3
,− r√

3
),(−r

√
2
3 ,−

r√
3
, r√

3
).

▶ the objective: f (±r
√

2
3 ,

r√
3
) = 2r3

3
√
3
;

f (r
√

2
3 ,±

r√
3
) = − 2r3

3
√
3
; f (0,±r) = 0.
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Inequality constraints

(Source: Pattern Recognition and Machine Learning by Chris

Bishop)

▶ Suppose a constraint g(x) ≥ 0. Then ∇g on the
border points ”inside” the feasible region.

▶ If maximizing, (unless the global max is inside the
feasible region), ∇f must point outside, in
opposite direction to ∇g , i.e.∇f = −λ∇g for
λ > 0.

▶ KKT conditions formalize Lagrangian multipliers
to inequality constraints.
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Reference

More Material:

▶ https://pages.hmc.edu/ruye/MachineLearning/lectures/ch3/node13.html

▶ https://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/

LagrangeMultipliers.pdf

▶ https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/

ebbeb8e61827a8058d2c45b674d003b3_MIT18_02SC_notes_22.pdf

▶ Convex optimization by Steph Boyd:
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

▶ Pattern Recognition and Machine Learning by Chris Bishop
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Lecture 4 Bayesian learning and variational inference.
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Bayesian Learning: Choosing priors
Frequentist vs bayesian

Problem with maximum likelihood
▶ Sometimes the maximum likelihood estimate of the parameters of a statistical models

lead to un-intuitive results.
▶ e.g. coin toss: estimate ”fairness” of a coin

▶ Observe T throws, modeled with observations x1, . . . , xT either 1 or 0, of a random variable
X .

▶ Estimate w , the parameter of a binomial distribution: p(X = +1) = w .
▶ The ML estimate is then wML =

∑
t xt
T .

▶ Say you have the results of 3 throws, observing 3 times 1 will make you conclude that w = 1
and all the future will for sure be 1.

▶ it could be a coincidence, but your estimation does not take into account your prior
knowledge about the problem.

=⇒ there are ways to incorporate apriori knowledge in a parameter estimation problem, one
such way is called Bayesian learning.
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Bayesian Learning: Choosing priors
Frequentist vs bayesian

Problem with maximum likelihood
When learning from data x

▶ the ML estimate formulated as

wML = argmax
w

p(x|W = w) (12)

▶ can be replaced with

wMAP = argmax
w

p(W = w |x) ∝ p(x|W = w)p(W = w), (13)

provided that we formulate our apriori knowledge as a density p(W = w), (e.g. a
uniform, Gaussian, ...).
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Bayesian Learning: Choosing priors
Different kinds of priors

▶ Subjective informative prior: Our belief inform
the statistical model for W .

▶ Subjective non-informative prior: Our belief is
that we don’t have any information about a
parameter W .
▶ Say that the new parameter U is related to W as

U = g(W ). One must make sure to have a uniform
prior also on U.

▶ How to do this ?

▶ Objective non-informative prior: Jeffreys prior is
a unique way to define a non-informative prior,
which is the same regardless of the choice of g .
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Bayesian Learning: Choosing priors
Jeffreys prior

Prior invariance
▶ Suppose a statistical model p(X |W ), a principle to choose a prior gives you p(W ).

▶ Suppose you re-parameterize W as U = g(W ). This gives a new statistical model
p(X |U). Applying the same principle to obtain a prior gives you p(U).

▶ Instead of reparameterizing W , you reparameterize the prior p(W ). This gives yet
another prior

∀u ∈ U p̄(u) = p(g−1(u))|g ′(g−1(u))|−1.

▶ Prior invariance means that

∀u ∈ U p(u) = p̄(g(w))

= p(w)|g ′(w)|−1,

i.e. a prior obtained applying a principle should remain the same after transformation.
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Bayesian Learning: Choosing priors
Jeffreys prior

Fisher information
▶ if the prior on W is defined according to Jeffreys principle:

∀w ∈ W p(W = w) ∝
√
det I (w),

where I (w) is the fisher information matrix, ∀(i , j) ∈ [K ]2

Iij(w) = Ep(X |W=w)

[(
∂ ln p(X |W = w)

∂wi

)(
∂ ln p(X |W = w)

∂wj

)]
= −Ep(X |W=w)

[
∂2 ln p(X |W = w)

∂wi∂wj

]
▶ then the prior is invariant
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Bayesian Learning: Choosing priors
Jeffreys prior

Fisher information
Let’s prove the equality in the definition for a parameter w ∈ R

I (w) = Ep(X |W=w)

[(
∂ ln p(X |W = w)

∂w

)(
∂ ln p(X |W = w)

∂w

)]
= −Ep(X |W=w)

[(
∂2 ln p(X |W = w)

∂w2

)]
.

This is true because ∀w ∈ W:

∂2 ln p(X |W = w)

∂w2
=

∂

∂w

[
∂ ln p(X |W = w)

∂w

]

=
∂2p(X |w)

∂w2

p(X |w)
−

(
∂p(X |w)

∂w

p(X |w)

)2
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Bayesian Learning: Choosing priors
Jeffreys prior

Fisher information
Also,

Ep(X |W=w)

[
∂2p(X |w)

∂w2

p(X |w)

]
=

∫
p(X = x |w)

∂2p(X=x |w)
∂w2

p(X = x |w)
dx =

∫
∂2p(X = x |w)

∂w2
dx

=
∂2

∂w2

∫
p(X = x |w)dx =

∂2

∂w2
1 = 0

thus

Ep(X |W=w)

[
∂2 ln p(X |W = w)

∂w2

]
= −Ep(X |W=w)

( ∂p(X |w)
∂w

p(X |w)

)2


= −Ep(X |W=w)

[(
∂ ln p(X |w)

∂w

)2
]
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Bayesian Learning: Choosing priors
Jeffreys prior

Applications

What is the Jeffreys prior density for the standard deviation parameter of a Gaussian density

with unknown mean and standard dev.? llh: ln f (X |µ, σ) = − lnσ − (X−µ)2

2σ2 + cst
Let’s calculate the Fisher information:

I11(µ, σ) = −Ep(X |µ,σ)

[
∂2 ln p(X |µ, σ)

∂µ2

]
=

1

σ2

I22(µ, σ) = −Ep(X |µ,σ)

[
∂2 ln p(X |µ, σ)

∂σ2

]
= Ep(X |µ,σ)

[
− 1

σ2
+

3X 2

σ4

]
= − 1

σ2
+

3Ep(X |µ,σ)[(X − µ)2]

σ4
= − 1

σ2
+

3σ2

σ4
=

2

σ2

I12(µ, σ) = I21(µ, σ) = −Ep(X |µ,σ)

[
∂2 ln p(X |µ, σ)

∂µ∂σ

]
= 0
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Bayesian Learning: Choosing priors
Jeffreys prior

Applications

What is the Jeffreys prior density for the standard deviation parameter of a Gaussian density

with zero mean? ln p(X |µ, σ) = − lnσ − (X−µ)2

2σ2 + cst.
The Jeffreys prior is

p(µ, σ) ∝
√
det I (µ, σ) ∝ 1

σ2

which is not a proper density function (does integrate to 1, cannot be normalized).
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Bayesian Learning: Choosing priors
Jeffreys prior

Applications

▶ However, the joint prior can be used as the asymptote of another distribution:

p(µ, σ) = p1(µ|σ)p2(σ) =
√
β√

2πσ
e

µ2β

2σ2 .
(bσ)a

Γ(a)

1

σ
e−bσ,

the Normal-Gamma(µ, σ, β, a, b), when β, a, b → 0.

▶ The Normal-Gamma distribution is a conjugate prior for the joint prior p(µ, σ),

▶ i.e. given a likelihood, p(X |µ, σ), p(µ, σ) is Normal-Gamma =⇒ the posterior p(µ, σ|X )
is also Normal-Gamma. This is convenient and so we always try to choose a conjugate
prior for the likelihood.
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Variational Inference (VI)
Motivation

▶ Suppose a Latent variable model p(X , S).

▶ What if the posteriors cannot be written in closed form ?

▶ Then we make a model for it: q(S |X ), or simply q(S).

▶ And we learn that model by minimizing DKL(q(S |X )||p(S |X )) wrt. q(S |X ).

▶ KL divergence ?

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Variational Inference (VI)
KL divergence

KL divergence

The Kullback–Leibler (KL) divergence measures how a probability distribution q is different
from a another distribution p.

▶ q and p must have the same support X .

▶ ∀x ∈ X p(x) = 0 =⇒ q(x) = 0

Definition for a random variable X ∈ X :

DKL(q(X )||p(X )) = Eq

[
ln

q

p

]
=

∫
X
q(x) ln

q(x)

p(x)
dx

Questions:

1. What is DKL(U(a, b)||U(c , d)) ?
2. What is DKL(N (µp,Σp)||N (µq,Σq)), both in k-dimension?

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Variational Inference (VI)
KL divergence

DKL(q(X )||p(X )) = Eq

[
ln

q

p

]
=

∫
X
q(x) ln

q(x)

p(x)
dx

KL divergence between uniform distributions

Let p(X ) = U(a, b), q(X ) = U(c , d). Assumptions on a, b, c , d ? [a, b] ⊆ [c , d ].

DKL(p||q) =
∫ b

a
p(x) ln

p(x)

q(x)
dx

=

∫ b

a

1

b − a
ln

d − c

b − a
dx

=
1

b − a
ln

d − c

b − a

[∫ b

a
dx

]
= ln

d − c

b − a
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Variational Inference (VI)
KL divergence

DKL(q(X )||p(X )) = Eq

[
ln

q

p

]
=

∫
X
q(x) ln

q(x)

p(x)
dx

KL divergence between Normal distributions

Let p(x) = N (x ;µp,Σp), q(x) = N (x ;µq,Σq).

Recall, p(x) = 1
(2π)k/2|Σ1|1/2

e−
1
2
(x−µp)TΣ

−1
p (x−µp).

DKL(p||q) = Ep[ln p − ln q]

DKL(p||q) = Ep

[
1

2
ln

|Σp|
|Σq|

− 1

2
(x − µp)

TΣ−1
p (x − µp) +

1

2
(x − µq)

TΣ−1
q (x − µq)

]
=

1

2

[
ln

|Σp|
|Σq|

− Ep

[
(x − µp)

TΣ−1
p (x − µp)

]
+ Ep

[
(x − µq)

TΣ−1
q (x − µq)

]]
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Variational Inference (VI)
KL divergence

KL divergence between Normal distributions

DKL(p||q) =
1

2

ln |Σp|
|Σq|

− Ep

[
(x − µp)

TΣ−1
p (x − µp)

]
︸ ︷︷ ︸

(1)

+Ep

[
(x − µq)

TΣ−1
q (x − µq)

]
︸ ︷︷ ︸

(2)


(1) (x − µp)

TΣ−1
p (x − µp) ∈ R, thus = tr((x − µp)(x − µp)

TΣ−1
p )

Ep [. . . ] = tr(Ep

[
(x − µp)(x − µp)

T
]
Σ−1
p ) = tr(Ik) = k

(2) Ep

[
(x − µq)

TΣ−1
q (x − µq)

]
= (µp − µq)

TΣ−1
q (µp − µq) + tr(Σ−1

q Σp)

Eq. 380 in Matrix Cookbook

Finally: DKL(p||q) =
1

2

[
ln

|Σp|
|Σq|

− k + (µp − µq)
TΣ−1

q (µp − µq) + tr(Σ−1
q Σp)

]
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Variational Inference (VI)
Minimizing KL divergence

▶ What if the posteriors cannot be written in closed form ?

▶ then we make a model for it: q(S |X ), or simply q(S).

▶ and we learn that model by minimizing DKL(q(S |X )||p(S |X )) wrt. q(S |X ).

▶ How do we do that computationally ? We said we couldn’t write the true posterior in
closed form ? Let’s look at the KL divergence more in details.

DKL(q(S |X )||p(S |X )) =
∑
s

q(S = s|X ) ln
q(S = s|X )

p(S = s|X )

=
∑
s

q(S = s|X ) ln
q(S = s|X )p(X )

p(X |S)p(S)

=
∑
s

q(S = s|X )

[
ln

1

p(X |S)
+ ln

q(S = s|X )

p(S)
+ ln p(X )

]
EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Variational Inference (VI)
ELBO

DKL(q(S |X )||p(S |X )) =
∑
s

q(S = s|X )

[
ln

1

p(X |S = s)
+ ln

q(S = s|X )

p(S = s)
+ ln p(X )

]
= −Eq(S |X )[ln p(X |S)] + DKL[q(S |X )||p(S)] + ln p(X )

Finally:

ln p(X ) = DKL(q(S |X )||p(S |X ))︸ ︷︷ ︸
≥0

−DKL[q(S |X )||p(S)] + Eq(S|X )[ln p(X |S)]︸ ︷︷ ︸
LELBO(q)

ln p(X ) ≥ LELBO(q)
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Variational Inference (VI)
ELBO

ln p(X ) ≥ LELBO(q) = −DKL[q(S |X )||p(S)] + Eq(S |X )[ln p(X |S)]

▶ Maximizing the ELBO, minimizes DKL(q(S |X )||p(S |X )), and learns to approximate the
posterior distribution

▶ The ELBO can also be expressed as follows:

LELBO(q) = −DKL[q(S |X )||p(S)] + Eq(S |X )[ln p(X |S)]

= Eq(S|X )

[
ln

p(S)

q(S |X )

]
+ Eq(S |X )[ln p(X |S)]

= Eq(S|X )

[
ln

p(X , S)

q(S |X )

]
= Eq(S|X ) [ln p(X , S)]− Eq(S |X ) [ln q(S |X )]
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Variational Inference (VI)
Coordinate Ascent Variational Inference (CAVI)

▶ We are approximating the posterior distribution with a distribution q(S |X ), we are free to
choose it’s form.

▶ A simple one is the mean field approximation:

p(S|X) ≈ q(S|X) = q(S) = q1(S1) . . . qT (ST ) = q1 . . . qT

▶ The qt factors are learnt one by one, let’s optimize t = i .

LELBO = Eq(S) [ln p(X,S)]− Eq(S) [q(S|X)]

= Eq(S) [ln p(X,S)]− Eq(S)

[
T∑
t

ln qt

]

= Eq(S) [ln p(X,S)]− Eq1...qT

[
T∑
t

ln q(St)

]

= Eq(S) [ln p(X,S)]−
T∑
t

Eq1...qT [ln qt ]
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Variational Inference (VI)
Coordinate Ascent Variational Inference (CAVI)

▶ We are approximating the posterior distribution with a distribution q(S |X ), we are free to
choose it’s form.

▶ A simple one is the so-called mean field approximation:

p(S|X) ≈ q(S|X) = q(S) = q1(S1) . . . qT (ST ) = q1 . . . qT

▶ The qt factors are learnt one by one, let’s optimize t = i .

LELBO = · · · = Eq(S) [ln p(X,S)]−
T∑
t

Eqt [ln qt ]

= Eq1...qT [ln p(X,S1, . . . ,ST )]− Eqi [ln qi ] + C

= Eqi

[
Eqj ̸=i [ln p(X,Si ,Sj ̸=i )]

]
− Eqi [ln qi ] + C

Let ln p̃(Si ) = Eqj ̸=i [ln p(X,Si ,Sj ̸=i )] + cst

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Variational Inference (VI)
Coordinate Ascent Variational Inference (CAVI)

▶ The qt factors are learnt one by one, let’s optimize t = i .

LELBO = · · · = Eqi [ln p̃(Si )]− Eqi [ln qi ] + C

= −DKL (qi ||p̃(Si )) + C

The divergence is minimized (LELBO maximized) when qi = p̃(Si ), i.e.

q∗i ∝ exp
(
Eqj ̸=i [ln p(X,Si ,Sj ̸=i )]

)

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Lecture 5 Viterbi
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Viterbi decoding

(Source: Figure 5.14)
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Viterbi

Decoding a sequence of observed variables

▶ Finding the best value of the latent sequence

̂(i1 · · · iT ) = arg max
(i1···iT )

P[S1 = i1, . . . ,ST = iT | x1, . . . , xT , λ]

= arg max
(i1···iT )

P[S1 = i1, . . . ,ST = iT , x1, . . . , xT | λ]
P[x1, . . . , xT | λ]

= arg max
(i1···iT )

P[S1 = i1, . . . ,ST = iT , x1, . . . , xT | λ]

= arg max
(i1···iT )

logP[S1 = i1, . . . ,ST = iT , x1, . . . , xT | λ]

This is saying that the sequence of states which maximizes the posterior distribution, also
maximizes the log-joint distribution.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Viterbi encoding

▶ We define the Viterbi variable:

χj ,t = max
(i1,...,it−1)

P[S1 = i1, . . . ,St−1 = it−1,St = j , x1, . . . , xt |λ]

▶ The probability that the best path ends in j at time t after having observed xt .

It can be computed recursively !

χj ,t = max
(i1,...,it−1)

P[St = j , xt |i1, . . . , it−1, x1, . . . , xt−1, λ]P[i1, . . . , it−1, x1, . . . , xt−1|λ]

= max
it−1

P[St = j , xt |St−1 = it−1, λ] max
(i1,...,it−2)

P[i1, . . . ,St−1 = it−1, x1, . . . , xt−1|λ]

= max
i

P[xt |St = j , λ]P[St = j |St−1 = i ]χi ,t−1

= P[xt |St = j , λ] max
i

ai ,j χi ,t−1

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Viterbi decoding
▶ Viterbi variable:

χj ,t = max
(i1,...,it−1)

P[S1 = i1, . . . ,St−1 = it−1,St = j , x1, . . . , xt |λ]

▶ Probability of the best path ending in state j after having observed xt at time t.

After iterating up to time t = T :

▶ When we have computed the variable up to time T ,

▶ maxj χj ,T is the value of the joint probability of the best sequence of states.

▶ However, we want the sequence of states it self

At t = T :

▶ We can get îT = argmaxj χj ,T

▶ We decode the rest of the indices backwards, for t = T − 1, . . . , 1:

ît = argmax
i

χi ,tai ,̂it+1
= argmax

i
χi ,tP[St+1 = ît+1|St = i ]

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Viterbi

There is a factorization of the joint distribution that is useful:

P[i1, . . . , it , . . . , iT , x1, . . . , xt , . . . , xT | λ]
= P[it+1, . . . , iT , xt+1, . . . , xT | i1, . . . , it , x1, . . . , xt , λ] · P[i1, . . . , it , x1, . . . , xt | λ]
= P[it+1, . . . , iT , xt+1, . . . , xT | it , λ] · P[i1, . . . , it , x1, . . . , xt | λ]

▶ Next we maximize

max
(i1···iT )

P[i1, . . . , it , . . . , iT , x1, . . . , xt , . . . , xT | λ]

= max
it

max
(i1···it−1)

max
(it+1···iT )

P[it+1, . . . , iT , xt+1, . . . , xT | it , λ]︸ ︷︷ ︸
f (it)

·P[i1, . . . , it , x1, . . . , xt | λ]︸ ︷︷ ︸
g(it)

= max
it

(
max

(it+1···iT )
P[it+1, . . . , iT , xt+1, . . . , xT | it , λ]

)
·
(

max
(i1···it−1)

P[i1, . . . , it , x1, . . . , xt | λ]
)
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Viterbi

▶ Maximization

max
(i1···iT )

P[i1, . . . , it , . . . , iT , x1, . . . , xt , . . . , xT | λ]

= max
it

(
max

(it+1···iT )
P[it+1, . . . , iT , xt+1, . . . , xT | it , λ]

)
·
(

max
(i1···it−1)

P[i1, . . . , it , x1, . . . , xt | λ]
)

▶ Decoding:
ît = argmax

i
χi ,t ai ,̂it+1

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Reference

More Material:
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Lecture 6 Transformers
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96 / 126

Transformers
General Architecture

(Source: Vaswani et al.)

▶ From a sequence
X = [x1, . . . , xT ]

T ∈ RT×d produces
another sequence
Y = [y1, . . . , yT ]

T ∈ RT×q.

▶ An encoding-decoding architecture for
sequence to sequence tasks, i.e. there is
an intermediate sequence:
z = [z1, . . . , zT ].

▶ Linear : X ′ = XW ∈ RT×d ′
.

▶ Feed-Forward : X ′ = MLP(X ) ∈ RT×d ′
.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Transformers
General Architecture

(Source: Vaswani et al.)
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Transformers
Scaled Dot-product Attention

▶ Q ∈ RT×D ,K ∈ RT×D ,V ∈ RT×q are transforms of X ∈ RT×d

Y = AV , with A = softmax

(
QKT

√
D

)
∈ RT×T

▶ ∀i ∈ [T ], yi = softmax
(
qiK

T
√
D

)
V =

∑T
j=1 vjαi ,j ∈ Rq. The output is a weighted sum

of the values.

▶ The attention weights are: αi ,j =
e
qi k

T
j /

√
D∑

j′ e
qi k

T
j′
/
√
D
=

f (qi ,kj )∑
j′ f (qi ,kj′ )

with a kernel defined

∀x, y ∈ RD × RD , f (x, y) = exy
T /

√
D > 0.

▶ Kernels (similarity) can be used to define conditional probabilities: p(kj |qi ) =
f (qi ,kj )∑
j′ f (qi ,kj′ )

.

▶ This means that ∀i ∈ [T ], yi =
∑

j p(kj |qi )vj = Ep(kj |qi )[vj ]

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Transformers
Scaled Dot-product Attention

Visually: Given a query sequence Q, a key sequence K, and a value sequence V, compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.

(Source: DLC, F. Fleuret)

A big issue is that we have to represent ma-
trix A in memory, making the memory footprint
quadratic in T !

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Transformers
Linear Scaled Dot-product Attention

▶ The quadratic complexity issue can be addressed by replacing the softmax function (work
by Fleuret et al.).

▶ Express the kernel f as a scalar product of some feature mapping φ : RD → RD′

f (x, y) = φ(x)φ(y)T

▶ This leads to

yi =
∑
j

f (qi , kj)vj∑
j ′ f (qi , kj ′)

=
φ(qi )

∑
j φ(kj)

Tvj

φ(qi )
∑

j ′ φ(kj ′)
T

▶ With the numerator in matrix form:
(
φ(Q)φ(K )T

)
V = φ(Q)

(
φ(K )TV

)
▶ i.e.

(
φ(K )TV

)
is computed once and reused for every query, reducing the complexity

from O(T 2) to O(T ) !

▶ The price to pay is that we only get an approximation of the softmax kernel.
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Transformers
Positional encoding

▶ Position information is lost in transformers: invariance to row swaps in K and V

▶ Also, timestamp are in general unbounded, can differ from sequence to sequence

▶ PE’s goal: Representing timestamps in high dimension D (an even number):
f (t) = [PE1(t),PE2(t), . . . ]

PE2k(t) = sin

(
t

L
2k
D

)
PE2k+1(t) = cos

(
t

L
2k
D

) , k = 0, . . . ,D/2− 1

▶ A sin wave of frequency f [Hz ]:

t 7→ sin(2πft) = sin(ωt),

▶ i.e. positional encoding represents time in high dimension by sampling D/2 sine waves of
increasing wavelength: ωk = L2k/D , where L is the maximum frequency.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Transformers
Positional encoding

▶ Representing timestamps in high dimension D (an even number):
f (t) = [PE1(t),PE2(t), . . . ]

PE2k(t) = sin

(
t

L
2k
D

)
PE2k+1(t) = cos

(
t

L
2k
D

) , k = 0, . . . ,D/2− 1

▶ Suppose that PE is used such that Q = XWQ + PE and K = XWK + PE where WQ

and WK are two trainable linear transforms

▶ Question: Write the scalar product between a query at instant t and a key at instant t ′.

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Transformers
Positional encoding

Example with a time indices t = 1, . . . , 100, L = 10000, D = 128.
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Applications
GPT

▶ Used as a generative model for time series x

p(x) =
T∏
t=1

p(xt |xt−1, . . . , x1)

▶ The pretraining loss of GPT models is the log-likelihood!

▶ Question : Draw this joint distribution

▶ Question : in this case what is the output time series ?

▶ yt = p(xt |xt−1, . . . , x1)

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Applications
seq2seq

▶ Example sequence to sequence task.
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Lecture 7: Variational Auto-encoders
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Architecture
Motivation

▶ There are multiple ways to represent data (e.g. colors: RGB, HSV, HSL, CMYK,...).

▶ Going from one way to another is called encoding.

▶ Decoding means going back to the previous representation.

Questions:

1. Why is it interesting to represent data differently ?
▶ For doing something with it, i.e. for downstream tasks: transmission, inference. Certain ways

to represent data are more efficient.
▶ Typically there are redundancy in raw signals (e.g. images, speech)

▶ It’s not always clear what’s the best representation for a particular downstream task.

▶ Best to learn it !

EQ2341 Pattern Recognition and Machine Learning, VT2025. Antoine Honoré.
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Architecture
Auto-encoders

▶ A compressed version of the data is an interesting representation

▶ Especially when the downstream task is unspecified.

▶ Auto-encoding is one way to compress data.

▶ The compressed representation is also called a latent representation.

Auto-encoders

▶ Hard to control the structure of the
latent space

Variational Auto-encoders

▶ Structures the latent space

▶ Can perform data generation
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Architecture
Variational

▶ A variational auto-encoder can be seen as a latent variable model:

p(X , S) = pθ(X |S)p(S)

▶ Cannot be used directly to maximize p(X ).
▶ Questions:

1. What is pθ(X |S) called ?
▶ The decoder

2. What is p(S) called ?
▶ The latent distribution, or the prior.

3. Another quantity is required (for inference), which one ?
▶ The posterior (i.e. the encoder) p(S |X )

▶ The true encoder is unknown and so we approximate it with a distribution that we
parameterize qϕ(S |X ).

▶ We learn its parameters such that DKL(qϕ(S |X )||p(S |X )) is minimized.
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ELBO
Formulation

▶ Remember how to deal with the minimization of DKL(qϕ(S |X )||p(S |X )) ?

DKL(qϕ(S |X )||p(S |X )) =
∑
s

qϕ(S = s|X ) ln
qϕ(S = s|X )

p(S = s|X )

=
∑
s

qϕ(S = s|X ) ln
qϕ(S = s|X )p(X )

p(X |S)p(S)

=
∑
s

qϕ(S = s|X )

[
ln

1

pθ(X |S)
+ ln

qϕ(S = s|X )

p(S)
+ ln p(X )

]
▶

ln p(X ) = DKL(qϕ(S |X )||p(S |X ))︸ ︷︷ ︸
≥0

−DKL[qϕ(S |X )||p(S)] + Eqϕ(S |X )[ln pθ(X |S)]︸ ︷︷ ︸
LELBO(q)

ln p(X ) ≥ LELBO(q)
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ELBO
Formulation

▶ And so we end up maximizing

LELBO(q) = −DKL[qϕ(S |X )||p(S)]︸ ︷︷ ︸
(1)

+Eqϕ(S |X )[ln pθ(X |S)]︸ ︷︷ ︸
(2)

▶ Question: What is (2) ? The reconstruction loss.
▶ The computation of this term requires sampling:

▶ but leads variance issues when differentiating the expectation directly.

▶ We resort to something called the reparameterization trick to compute the expectation
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ELBO
Reparameterization trick

▶ Given a data point x ∈ Rd , the reparameterization trick is used

s ∼ qϕ(S |X = x) ⇔ s = gϕ(ϵ; x), ϵ ∼ p(ϵ)

▶ Question: example in RD with p(ϵ) = N (ϵ; 0, ID):

s ∼ N (s;µ,Σ) ⇔
s = µ+ Aϵ, ϵ ∼ p(ϵ), AAT = Σ

▶ The reconstruction loss is then approximated

Eqϕ(S |X=x)[ln pθ(X |S)] = Ep(ϵ) [ln pθ(X |S = gϕ(ϵ; x))]

≈ 1

L

L∑
l=1

ln pθ(X |S = gϕ(ϵ
(l); x))

with ϵ(l) ∼ p(ϵ).
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ELBO
Reparameterization trick

▶ The reconstruction loss is Eqϕ(S|X=x)[ln pθ(X |S)].
▶ Question: How does this relate to e.g. the mean squared error ?

▶ The decoder is formulated with the reparameterization trick:

for s ∼ qϕ (S |X = x) we compute x̂ = hθ(s) for some function hθ,

▶ The loss function is a Gaussian centered on the input x ∈ Rd

i.e. pθ(X = x̂|S = s) = N
(
hθ(s); x, σ

2Id
)

▶ Finally, the reconstruction loss:

Eqϕ(S|X=x)[ln p(X |S)] ≈ 1

L

L∑
l=1

[
cst− 1

2σ2
(hθ(s

(l))− x)T (hθ(s
(l))− x)

]
,

where s(l) ∼ qϕ(S |X = x).
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Prior Distributions

▶ Recall, we are maximizing

LELBO(q) = −DKL[qϕ(S |X )||p(S)]︸ ︷︷ ︸
(1)

+Eqϕ(S |X )[ln pθ(X |S)]︸ ︷︷ ︸
(2)

▶ We spoke about the reconstruction term in (2).
▶ Question: What about (1) ? What do we need to compute it ?

▶ To specify the prior and variational distribution.

▶ The form of the variational distribution will depend on the prior
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Prior Distributions
Gaussian Prior

▶ The original paper proposes a Gaussian prior, e.g. in RD : p(S) = N (0, ID)

▶ In that case the encoder of a data point x ∈ Rd , is also a Gaussian:

qϕ(S |X = x) = N (S ;µϕ1(x), σ
2
ϕ2
(x)ID),

where ϕ = {ϕ1, ϕ2} are parameters of neural networks for instance.

▶ Question: What is the expression of DKL[qϕ(S |X = x)||p(S)] ?

DKL[qϕ(S |X = x)||p(S)] = 1

2

D∑
i=1

(1 + lnσ2
i − µ2

i − σ2
i ),

where µi is the i-th component of µϕ1(x) ∈ RD .
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Prior Distributions
More priors

▶ What other prior can be used ? Gaussian mixture models ! e.g.
https://arxiv.org/pdf/1611.02648

▶ Model: {
pβ,θ(x, s,w, z) = pθ(x | s)pβ(s | w, z)p(w) p(z)

▶ Prior: 
w ∼ N (0, I)

z ∼ Mult(π)

s | z,w ∼
∏K

k=1N
(
µzk (w;β), diag

(
σ2
zk
(w;β)

))zk
▶ Decoder: {

x | s ∼ N
(
µ(s;θ), diag

(
σ2(s;θ)

))
or B (µ(s;θ))

▶ LELBO: 
Eq

[
pβ,θ(x,s,w,z)
q(s|x,w,z)

]
= Eq(s|x) [log pθ(x|s)]− Eq(w|x)p(z|s,w)

[
KL
(
qϕx

(s|x) ∥ pβ(s|w, z)
)]

−KL
(
qϕw

(w|x) ∥ p(w)
)
− Eq(s|x)q(w|x) [KL (pβ(z|s,w) ∥ p(z))] .
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Prior Distributions
More priors

▶ What other prior can be used ? Discrete ! e.g. https://arxiv.org/pdf/1711.00937

▶ Encoding: q(zk = 1|x) =

{
1 for k = k∗ = argminj ||ze(x)− ej ||
0 otherwise

, and zq(x) = ek∗

▶ Deterministic (zero entropy)! With a uniform prior, constant KL divergence
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Prior Distributions
More priors

▶ What other prior can be used ? Discrete ? e.g. https://arxiv.org/pdf/1711.00937

▶ Training: Loss = ln p(x |zq(x))︸ ︷︷ ︸
(1)

+ ||sg(ze(x))− ek∗ ||+ β||ze(x)− sg(ek∗)||︸ ︷︷ ︸
(2)

▶ sg(.) is identity during forward, and cuts gradient during backward.

▶ (2) ensures that embeddings and encodings get closer during training.
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Lecture 8: Overall Recap
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Q & A I

1. What is an HMM ?

1.1 A statistical model for timeseries. Assuming observations (1) explained with corresponding
latent variables modeled with a Markov chain in time, and (2) independent to each other
given the corresponding latent variable.

2. Why is the EM algorithm required to learn the parameters of a hidden Markov model?

2.1

3. In EM, why is an auxiliary function required ?

3.1 Too computationally expensive to compute the evidence.

4. In the context of HMMs, what is p(x) ?

4.1 Likelihood function of an observed sequence x.

5. In the context of HMMs, what is p(x, s) called ?

5.1 The joint distribution of the observation and latent variables.

6. In the context of HMMs, how are p(x) and p(x, s) related ?

6.1 The Joint distribution of the observation and latent variables.

7. In the context of HMMs, what is p(st |x) for a time t.
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Q & A II

7.1 The posterior distribution of the latent variable at time t given the observed data.

8. What is the difference between Bayesian and frequentists statistics ?

8.1

9. What is the joint density function fX1,X2(x1, x2) of independent random variables X1, X2 ?

9.1

10. What is the expected value of a random variable with a mixture of gaussian probability
model ?

10.1

11. What is the preferred model for a feature vector ?

11.1 Random variables page 15

12. Write suppose three events A,B,C , write Bayes rule for the joint distribution p(A,B|C ).

12.1

13. For binary classification, what decision rule should you use when there are much more
data in one class ?

13.1
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Q & A III

14. In classification, what is a decision function ?

14.1 returns a class index from data

15. What is are discriminant functions ?

15.1 functions returning a real score for each class

16. What is a general form for a generative statistical model with latent variables

16.1 p(X,S) = p(X,S)p(S)

17. What do we call the likelihood of data ?

17.1

18. What’s the difference between a fine-state and an infinite duration HMM ?

18.1

19. What parameter estimation paradigm have we seen in the course ?

19.1 Maximum likelihood and Bayesian learning

20. How can the parameters of a Markov chain be expressed ?

20.1

21. What is a left-right HMM ?
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Q & A IV

21.1

22. What does it mean to factorize a joint distribution ?

22.1

23. What does the forward algorithm do ?

23.1

24. What does the backward algorithm do ?

24.1

25. What does the Viterbi algorithm do ?

25.1

26. What is the difference between the Baum-Welch and the EM algorithm

26.1

27. Describe the EM algorithm

27.1

28. What are the convergence guarantees of the EM algorithm ?

28.1
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Q & A V

29. What is the difference between a subjective and objective uninformative prior ?

29.1 the same up to a change of variable

30. What is the Jeffreys prior ?

30.1

31. What is a conjugate probability distribution ?

31.1

32. What is a conjugate probability distribution ?

32.1

33. What is variational inference ?

33.1

34. What is a conjugate probability distribution ?

34.1
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